161 research outputs found

    Prediction of the number of cloud droplets in the ECHAM GCM

    No full text
    In this paper a prognostic equation for the number of cloud droplets (CDNC) is introduced into the ECHAM general circulation model. The initial CDNC is based on the mechanistic model of Chuang and Penner [1995], providing a more realistical prediction of CDNC than the empirical method previously used. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity, and a shape parameter, which takes the aerosol composition and size distribution into account. The total number of aerosol particles is obtained as the sum of marine sulfate aerosols produced from dimethyl sulfide, hydrophylic organic and black carbon, submicron dust, and sea-salt aerosols. Anthropogenic sulfate aerosols only add mass to the preexisting aerosols but do not form new particles. The simulated annual mean liquid water path, column CDNC, and effective radius agree well with observations, as does the frequency distributions of column CDNC for clouds over oceans and the variations of cloud optical depth with effective radius

    Diagnose und Graduierung zervikaler intraepithelialer Neoplasien

    Get PDF
    Zusammenfassung: Diagnose und Graduierung von zervikalen intraepithelialen Neoplasien (CIN) gehören zu den häufigen Fragestellungen in der histopathologischen Diagnostik. Trotzdem kann die Unterscheidung zwischen reaktiven Veränderungen und CIN1 bzw. die Graduierung einer CIN Schwierigkeiten bereiten. In dieser Studie wurde untersucht, ob die Bestimmung der Proliferationsmarker Ki-67 und Mcm2 sowie von p16 zur Beantwortung dieser Fragestellungen beitragen. Untersucht wurden die immunhistochemischen Expressionsprofile dieser Marker an 297Proben aus dysplasiefreiem Portioepithel, CIN1, CIN2 und CIN3 mittels Gewebemikroarrays. Die mittels Ki-67 bzw. Mcm2 ermittelte Proliferationsrate zeigte eine Zunahme von dysplasiefreiem Epithel über CIN1, CIN2 zu CIN3 (p<0.001 bei beiden Markern). Mittels Ki-67 ließ sich am besten zwischen dysplasiefreiem Epithel und CIN1 unterscheiden. Zur Abgrenzung von CIN1 zu CIN2 bot sich eine Kombination von Ki-67 und p16 an. Bei einer Ki-67-Expression von<25% handelte es sich um eine CIN1 mit einer Sensitivität von 91,7% und einer Spezifität von 54,3%. Die zusätzliche Untersuchung der Expression von p16 konnte einen weiteren Teil der Fälle mit einer Ki-67-Expression von<25% stratifizieren. Die Anzahl p16-positiver Fälle betrug bei normalen Epithelien 0%, bei CIN1 7%, bei CIN2 46% und bei CIN3 86%. Somit war mittels p16 eine Abgrenzung der CIN2 zur CIN3 nur zum Teil möglich. Die histopathologische Evaluation am HE-Schnitt bleibt Grundlage der Beurteilung von zervikalen intraepithelialen Neoplasien, jedoch kann die Analyse von Ki-67 und p16 zur Diagnose und Graduierung beitrage

    Local and remote impacts of aerosol climate forcing on tropical precipitation

    Get PDF

    Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Get PDF
    A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (&amp;gt;90%) scavenged by cloud nucleation processes for all aerosol species, except for dust (50%). The aerosol number scavenged is primarily (&amp;gt;90%) attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds), mid-troposphere &lt;sup&gt;210&lt;/sup&gt;Pb vertical profiles, and the geographic distribution of aerosol optical depth is found for the new diagnostic scavenging scheme compared to the prescribed scavenging fraction scheme of the standard ECHAM5-HAM. The diagnostic and prognostic schemes represent the variability of scavenged fractions particularly for submicron size aerosols, and for mixed and ice phase clouds, and are recommended in preference to the prescribed scavenging fractions method

    Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe

    Get PDF
    Nitrogen oxide (NOx) pollution is emerging as a primary environmental concern across Europe. While some large European metropolitan areas are already in breach of EU safety limits for NO2, this phenomenon does not seem to be only restricted to large industrialized areas anymore. Many smaller scale populated agglomerations including their surrounding rural areas are seeing frequent NO2 concentration violations. The question of a quantitative understanding of different NOx emission sources is therefore of immanent relevance for climate and air chemistry models as well as air pollution management and health. Here we report simultaneous eddy covariance flux measurements of NOx, CO2, CO and non methane volatile organic compound tracers in a city that might be considered representative for Central Europe and the greater Alpine region. Our data show that NOx fluxes are largely at variance with modelled emission projections, suggesting an appreciable underestimation of the traffic related atmospheric NOx input in Europe, comparable to the weekend-weekday effect, which locally changes ozone production rates by 40%

    Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do

    Get PDF
    Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models

    The regional aerosol-climate model REMO-HAM

    Get PDF
    REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies

    The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Get PDF
    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies

    Analysis and quantification of the diversities of aerosol life cycles within AeroCom

    Get PDF
    Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO_4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO_4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO_4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO_4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by S_O4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO_4 and SS. It is the dominant sink for SO_4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and turbulent dry Deposition. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for a given species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO_4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times

    An AeroCom initial assessment – optical properties in aerosol component modules of global models

    Get PDF
    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds)
    • …
    corecore