406 research outputs found

    Spatial frequency response of an optical heterodyne receiver

    Get PDF
    The principles of transfer function analysis are applied to a passive optical heterodyne receiver to obtain the modulation transfer function (MTF). MTF calculations are performed based on an optical platform which is imaging vertically varying profiles at worst case shuttle orbit altitudes. An analysis of the derogatory effects of sampling (aliasing) and central obscurations on both resolution and heterodyne efficiency is given. It is found that the cascading property of MTF analysis must be carefully applied since the coherent transfer function of the optical receiver and that due to the local oscillator-detector combination are not separable but are related by the convolution of their products. Application of these results to the specific case of a space-lab type optical heterodyne receiver shows that resolutions of the order of 1.5-2.0 Km are possible for worst-case type orbital scenarios. Further, comparison of obscured-type receivers (e.g., Cassegrains) with unobscured receivers shows that both resolution and efficiency are severely degraded in an obscured-type receiver and consequently should not be used for a passive heterodyne detection scheme

    Proton-radiation damage in Gunn oscillators

    Get PDF
    The irradiation effects of 22 MeV protons on the electrical characteristics of GaAs continuous-wave Gunn oscillators was studied. The radio frequency power output was reduced by 3 decibels at proton fluences in the neighborhood of 1.5 x 10 to the 12th power protons/sq cm. Conductance measurements indicate that the carrier removal rate at high electric fields remained roughly 40 percent less than at low fields. Diode efficiencies of two device groups were found to be monotonically descreasing functions of fluence. Frequency modulation noise was generally unaffected by radiation, but the magnitude of the noise in the noise power spectrum increased significantly. These effects are partially accounted for, in a qualitative fashion, by a model of electron traps having field-dependent net-carrier capture rates and various response times

    Magnetometer with miniature transducer and automatic transducer scanning apparatus

    Get PDF
    Magnetometer is simple to operate and has fast response. Transducer is rugged and flat and can measure magnetic fields as close as 0.08 mm from any relatively flat surface. Magnetometer has active region of approximately 0.64 by 0.76 mm and is capable of good spatial resolution of magnetic fields as low as 0.02 Oe (1.6 A/m)

    Wavelength error analysis in a multiple-beam Fizeau laser wavemeter having a linear diode array readout

    Get PDF
    An estimate of the wavelength accuracy of a laser wavemeter is performed for a system consisting of a multiple-beam Fizeau interferometer and a linear photosensor array readout. The analysis consists of determining the fringe position errors which result when various noise sources are included in the fringe forming and detection process. Two methods of estimating the fringe centers are considered: (1) maximum pixel current location, and (2) average pixel location for two detectors with nearly equal output currents. Wavelength error results for these two methods are compared for some typical wavemeter parameters

    A magnetic field measurement technique using a miniature transducer

    Get PDF
    The development, fabrication, and application of a magnetometer are described. The magnetometer has a miniature transducer and is capable of automatic scanning. The magnetometer described here is capable of detecting static magnetic fields as low as 1.6 A/m and its transducer has an active area 0.64 mm by 0.76 mm. Thin and rugged, the transducer uses wire, 0.05 mm in diameter, which is plated with a magnetic film, enabling measurement of transverse magnetic fields as close as 0.08 mm from a surface. The magnetometer, which is simple to operate and has a fast response, uses an inexpensive clip-on milliammeter (commonly found in most laboratories) for driving and processing the electrical signals and readout. A specially designed transducer holding mechanism replaces the XY recorder ink pen; this mechanism provides the basis for an automatic scanning technique. The instrument has been applied to the measurements of magnetic fields arising from remanent magnetization in experimental plated-wire memory planes and regions of magnetic activity in geological rock specimens

    An analysis of the facsimile-camera response to radiant point sources

    Get PDF
    In addition to imaging the surrounding terrain, planetary lander cameras may also be used to survey the stars to aid in locating the lander site. The response of the facsimile camera, which was selected for the Viking lander missions to Mars, to a radiant point source is formulated and shown to result in a statistical rather than deterministic signal. The signal statistics are derived and magnitudes are evaluated for the brighter visual and red stars. The probability of detecting the resultant statistical signals in photosensor and preamplifier noise and the associated probability of false alarms are also determined

    Convergence of Agriculture and Energy: II. Producing Cellulosic Biomass for Biofuels

    Get PDF
    Global energy demand is increasing as known global petroleum supplies are decreas¬ing. Calls to supplement or replace the current fossil-based energy system with new, envi¬ronmentally and economically sustainable strategies continue to increase, especially in light of more expensive traditional energy sources. Various governmental agencies and working groups have set aggressive targets and timelines for decreasing fossil fuel consumption by substituting bio-based energy (Bush 2007; Foust et al. 2007; Perlack et al. 2005; Smith et al. 2004). The alignment and continuity of these goals is illustrated in Figure 1. Current biofuel production in the United States relies primarily on corn grain conver¬sion to ethanol, but future systems are expected to depend more intensively on plant biomass than on grain as a feedstock for production of ethanol and other biofuels. In addition, current cropping systems generally are designed to optimize grain production and are not designed to harvest all the aboveground portion of the plant for cellulose-containing biomass. Significant, immediate national investments are needed, along with changes in policy, to address chal¬lenges limiting the sustainable production and efficient use of cellulosic biomass as a fuel feedstock to meet anticipated U.S. demand. The Bush Administration outlined a portfolio of recommended technologies, pro¬cesses, and practices for bio-based energy production that targets improved rates of feedstock conversion and greater efficiency in energy use. The plan also states that a significant portion of the nation’s 2017 energy supply, especially transportation fuel, will come from conversion of biomass feedstock to liquid fuels. Considering just the biomass-derived fuels contribution, roughly 250 million tons or more of grain and cellulosic biomass per year will be needed to reach the 10-year goal, and 650 to 700 million tons per year of biomass to reach the 2025 goal (Figure 1)

    Intervention and Outcomes of Children in Different Types of Listening and Spoken Language Programs

    Get PDF
    This study explores the impact of the type and dosage of listening and spoken language (LSL) services on speech and language outcomes in children with cochlear implants or hearing aids in two LSL programs. Identical demographic variables were collected across the two programs for use in the statistical analyses. Speech and language outcomes were examined at ages 3 and 5 using standardized test measures. At age 3, significant differences in LSL outcomes existed between programs for children using cochlear implants but not for children using binaural hearing aids. However, at age five, outcomes were similar between the different LSL programs for children with hearing aids and cochlear implants. Total hours of LSL services do not serve as a predictor of LSL outcomes at five years of age. However, early identification of hearing loss, early amplification, and early enrollment in a LSL program were highly influential factors affecting LSL outcomes at three and five years of age. Non-verbal IQ and maternal education levels also influence LSL outcomes. Children with earlier access to hearing technology and LSL intervention may need fewer hours of LSL services to achieve age-appropriate LSL outcomes. Overall, both of these LSL programs supported age-appropriate speech and language outcomes by age 5

    Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability

    Get PDF
    In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR
    corecore