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SPATIAL FREQUENCY RESPONSE OF AN
OPTICAL HETERODYNE RECEIVER

Carl L. Fales and Don M. Robinson
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SUMMARY

The principles of transfer function analysis have been applied to a
passive optical heterodyne receiver to obtain the modulation transfer function
(MTF). MTF calculations have been performed based of an optical platform
which is imaging vertically varying profiles at worst case shuttle orbit
altitudes. BAn analysis of the derogatory effects of sampling (aliasing) and
central obscurations on both resolution and heterodyne efficiency is given.

INTRODUCTION

One measure of performance of an optical imaging system is its ability to
reproduce an object distribution with sufficient signal-to-noise ratio and
resolution so as to make the information contained within the image useful.
Generally, such a system may be characterized by its optical transfer function
(OTF) or, in certain cases, by the modulation transfer function (MTF) (ref. 1).

For conventional imaging systems using either coherent or incoherent
illumination, one usually assumes linearity in the imaging process so that the
cascading property of transfer function analysis applies (ref. 2). Under this
assumption, the MTF's of the individual subsystems (i.e., optics, detector,
electronics, etc.) can be multiplied to give the overall transfer function.

In this paper, the principles of transfer function analysis have been
applied to a passive optical heterodyne receiver which is assumed to be
imaging vertically varying spatial profiles at worst-case shuttle orbit
altitudes. Results of the analysis show some interesting departures from the
properties described above; namely, that the cascading property must be
carefully applied and that optical receivers having obscurations, such as a
Cassegrains, are not optimum for heterodyne-type detection.

THEORETICAL ANALYSIS
Imaging Considerations
Consider an optical receiver which is imaging an object amplitude

distribution as shown in figure 1. Using scalar diffraction theory, the signal
amplitude, Es' in the detector plane, r, is given by (ref. 3)
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where h(r) is the impulse response of the imaging optics and Eg(gj is the
amplitude of the geometrical image of the object. The shift invariance of
h(r) can be justified for the heterodyne applications discussed here by a
careful examination of the various phase factors appearing in the impulse
response function.

For mixing of two deterministic optical beams in an ideal detector, the

mean-square heterodyne current power at the difference frequency, f = Iv -V
is (ref. 4) o
22 2
12 =2 a’r % (v) E_(x) (2)
het (h\))2 o — s =
det

where E (r) is the local oscillator amplitude distribution in the detector
plane, n is the quantum efficiency, e is the electronic charge, and hv is
the photon energy. A simple-minded classical approach is taken to obtain the
correct expression from which the spatial frequency analysis may begin. We
recognize that the geometrical image field, E (s,v), is a stochastic process
which we synthesize by discrete frequency comgonents with random phases. Now,
for a deterministic L.0O. field and a quasi-monochromatic optical signal,
equation (1) and the generalization of equation (2) combine to give

-
Iie = 2:1 € z X} s'<Eg(§,f+vo)E;(_s_',f+\)o)> jdrzE;(g)h(g—g)
( v) e det
.2
J-d r'E_(r')h*(r'-s") (3)
det

where < > represents an averade over the ensemble of signal fields. It is
assumed that the source, i.e., the sun, of the image field on the detector is
spatially incoherent. The appropriate substitutions are

<E_(5, V)EX(s', v)> > Af )\ZPg(_s_, v)S(s - s')

2 2
Thet ~ Thet (F)0F

where P represents the image spectral radiance at the detector plane in

W/mz/str/Hz and I (f) is the current spectral power density in A2/Hz.
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Equation (3) becomes

I2 (£) = 2n2e2>\2
et 2

2 2
n . j a s[Pg(_s_, Vo ¥ E) ¥ P (s, v, - H1liT(s) & h(-s) |

-0

where £ > 0 and we note that the L.O. mixes with the signal field components
at vo + £ and vo ~ f. Here, we have expressed the detector overlap inte-
gral Oof the L.O. field and the impulse response function as

+o0

‘S‘Tdet(E)E;(E)h(E - 9)dr = T*(s) @ h(-g)

-0

where T (r) is the aperture function of the detector geometry and the

product det(E)E;(E) = T;(E) is simply that portion of the L.O. that is

transmitted by the detector aperture.

Referring to the detector scheme of figure 2, the output current from
the synchronous detector is

400
2 2.2
2Te™ n A 2 2
= et +f + rs - *
ISync (hv)2 d’s MY deHhet(f)l [Pg(g_,\)O ) Pg(§_vo f)]ITO(g)
-0 (f>0)
e h(-g)|°
where Hhet is the total heterodyne transfer function defined by
[ ]
2 2 2 2
‘Hhet(f)l - lel ‘Hd| IHifal

and T 4is the optical transmission factor. The various contributions to
Hhet are (1) the signal/L.0. mixing transfer function, Hm' representing

carrier diffusion and transit time effects in the detector; (2) the photo-
detector transfer function, H.,, comprised of contributions due to
capacitance, resistance and inductance; and (3) the I.F. amplifier and filter
transfer function, H. The sguare-law detector is assumed to have a unity

ifa’
transfer function (qu = 1). The shot noise transfer function, Htr’ is due
only to transit time effects as opposed to Hm.
497



Heterodyne Transfer Function

In this paper, we are interested in the spatial frequency response of the
heterodyne receiver to a vertically varying object profile as shown in
figure 1. This is different from the I.F. considerations discussed previously
other than a knowledge of the total I.F. power. To obtain the spatial
frequency response and, ultimately, the system modulation transfer function
(MTF) , we assume the object scene radiance (and, consequently, the image
scene) is linearly translated due to motion of the optical receiver, e.g., an
orbiting platform. Thig induces a translation of the image coordinates by
an amount

> - +
Pg(s, Vo + f) Pg(s X, Vg £)
Further, we define
2
- = + + R - £
Pg( x) J dlehet(f)[ [Pg(r, v, + ) Pg(r v, )]

(£>0)

Since the impulse response, h, is invariant, we have the output current from
the synchronous detector as

40

2 2.2
I =1 [r®)]= 333114&—\[ s P (x - ) |T*(s) @h(-)[? (a)
c nc — g o

syn sy (hv)2

Eqguation (4) is of the form of a convelution

I [rw] =202 5 () 2 |1*x) @h(-n)]°
sync (hv) = o= =
Decomposition of ISync into its spatial frequency components is

obtained by the Fourier transformation
o
~ -i27mK-r
I (K) = jel =g (r) &°x
sync — sync —
-—CO

Using the convolution theorem, we have
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~ 2Te2n2A2
I (K) = =—5"— G _(K)[G*(-K)H(-K) 8 G_(K)H*(K) ] (5)
sync — (hv)2 — o — — o —

where K is the spatial frequency vector variable defined by its rectangular
components (Kx,Ky), Gg(g) is the object, or more specifically, the geometrical

image spectrum, GO(E) is the detector pupil function modulated L.O. spectrum,

and H(X) is the coherent transfer function of the system (ref. 3).

Equation (5) illustrates the departure of the transfer function obtained
in a heterodyne system with that obtained in conventional imaging systems.
Remembering that the coherent transfer function, H(K), is equal to the pupil
function of the optical receiver (with a suitable change in variables) (ref.
3), the conventional optical transfer function is proportional to

Gaer (K [H(-K) @ H*(K) ]

Gdet(gg is the Fourier transform of the detector aperture function,

Tdet(E)' In equation (5), however, we see that H(X) is modified by the
. spectrum of the L.O./detector combination, GO(K). The normalized convolution

where

of the product GO(§)H*(§) with its negative argument complex conjugate is

defined as the heterodyne transfer function, G _. Functionally, then, we define
a normalized heterodyne transfer function by

GX(-K)H(-K) & G_(K)H* (K)

= (6)
[GX(-KIH(-K) 8 G_(K)H*(K) ]E=0

G, (K)

or jd2K'GO(El)H*(_IS_')G;(_IS'_E)H(E'_.IE)

G, (K)

i

BdZK' la & |*laEn |?

Heterodyne Efficiency Factor

The denominator of equation (6) indicates that the product G_(K)H(K)
represents the optics/L.O. detector amplitude spectrum that is transferred to
the detector. Using Parseval's theorem, the integral
5d2K]GO(§)12]H(§)|2 is thus the power available for heterodyning out of a

2 .
total L.O.-detector power of Po = d2K|GO(§)| . For a uniform extended

source, we may thus define an efficiency factor
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2 2
Jd k|G, (K) |

With this definition, the current spectrum for the synchronous detector

(equation (5)) becomes

K) =

I
sync —

2Te
(h\))2

2n2A2

P_XGy (K) G (K) (8)

Equation (8) may be related to a more conventional form of heterodyne

efficiency found in the

literature (ref. 5). The synchronous detector current

is the inverse Fourier transform of equation (8), i.e.,

+o0

For a stationary scene,

have r = 0 so that

I (C
sync

) =

a’x 1

sync

(K) ei2ﬂ§1£

i.e., before translation of the image coordinates, we

I (K) 4"k
sync —

(9)

4o
Substitution of equation (8) into equation (9) and assuming a blackbody source
of geometrical shape factor, Ag(g), and radiance Pg(;), we have

P (r) = 2 BHIF A ()
g Az(ehv/KT -1 g —
and
2 2 o0
I (x=o0) G 2, j a’K A_(K)G. (K) (10)
sync — hv(eh\)/KT -1 g — "H —

e OO

where mixing occurs over an effective bandwidth 2B centered at the L.O.

HIF

frequency, a polarization loss factor of 0.5 is included, and A (K) 1is the
Fourier transform of A (r). The integral portion of equation (EO) has the
form of a throughput, ile., that portion of the image passed by the heterodyne
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transfer function. The product of x and this integral is an efficiency

<00

; 2, -
Xpet = X y d"K A_(K) Gy (K) (11)

-00

so that equation (10) becomes

2 2
4Te N P By pXhet

(ehv/KT -1

IS nc(r =0) =
Y hv

If now, we define a shot noise level due to the L.O. by

2 e2
e _»p g
(hv) o SIF

then the signal~to-noise ratio in the shot noise limit becomes

= B
s _Teyne'® =9 2T N . _HIF
~ hv/KT het B
N N (e / - 1) € SIF
where we have defined
= <
nhet n Xhet =n
as the heterodyne quantum efficiency and BSIF is the effective shot noise
bandwidth. ©Note that for a uniform extended source, Ag(E) = §(K) and
equation (11) reduces to Xhet = X and et = NX- In this case, the

efficiency factor, X, which we have defined in equation (7) is equivalent
(to within the D.C. gquantum efficiency, n) to the heterodyne quantum
efficiency, nhet' found in the literature (ref. 5).

System Transfer Function

Results from the previous section may now be used to calculate the
system transfer function, including the low-pass filter (see figure 2), for
the specific case of imaging a one-dimensional object through an optical
receiver which has rectangular symmetry. This case has some physical
significance since the resolution elements of interest in an orbiting
heterodyne receiver are vertically varying stratospheric layers. 1In addition,
to avoid scaling difficulties in the calculations we will use angular
coordinates defined by (see figure 1)
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X

Y .
6 = q ¢ = I (radians)
i i
= . = i 12
Ke dei' K¢ KYdi (cycles/radian) (12)
and
L
6_ = . (radians)
F d

i

where 6 is the geometrical instantaneous field of view (I.F.0.V.) of the
optical receiver.

Using equations (12) and the one-dimensional geometry, equation (6)
becomes

K K
. 0 . 5]
[51nc(6FKe)RECT(2KC)] ) [s:.nc(eFKe)RECT(zKC)]
GH(Ke;Kc,SF) = Ke Ke (13)
{[51nc(eFKe)RECT(5E;o] =3 [51nc(6FKe)RECT(5E;)]}Kezo
where I
. 1, |x| <2
. _ sin X X _ —
sinc(X) = e and RECT(2£) =

o, |x| > 2

Equation (13) assumes a plane wave local oscillator incident of the
detector so that the detector/L.O. transfer function becomes simply the
Fourier transform of the detector aperture. Further, the coherent transfer
function for the optics is the pupil function (rectangular in shape) having
a coherent cut-off frequency of Kc = DA/ZA, where DA is the diameter of the

receiver aperture and A the wavelength. This convolution process is shown
in figure 3.

Equation (13) along with equation (8) gives the system transfer function
up to the low-pass filter. Expressing GH(Ke;Kc,eF) and X(KC,GF)
(equation (7)) in integral form, we have
al K! K'-K

8 8 0
. [} 3 r_
Jr 51nc(8FKe)RECT(2Kc)slnc[GP(Ke Ke)]RECT( 2K

)dK!
o

—CO

GH(Ke;KcleF) = +oo
[ 2 Ko
sinc (GFKG)RECT (E) dKO

=00

(14)
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K 2
a2 .2 9
x(Ke,BP) = eP .Y sine (GFKe)RECT(EE;)dKe (15)

-00

Finally, inclusion of the low-pass filter transfer function, HLP' (i.e.,
the integration time, 1) which, in this case is modeled as a running mean

integrator, we have

v T
HLP(Ke) = 51nc(—E—-Ke)

where vy is the vertical compcnent of the orbital velocity, z the receiver-
object distance, and T the integration time. The total transfer function is
then the modulation transfer function

MTF(K) = |Gy (R H L (Ky) |

Equations (14) and (15) can be evaluated in terms of tabulated functions
yvielding the following relations which will be used for computational purposes

VOT Ke v,T (cos(wGFKe)
MTF (Kgi0p K, —) = (N) RECT(4KC) |sine(—— K,) TR, X
[c, (l2me ko - 2mo K _[) ~ ¢, (2m6.K )] +
: h
31n(weFKe) x
— e [si(ZﬁeFKc| - s, (2mB K, - ZNGFKC)] (16)
F 8 /!
1 - cos(2m6_K ) _
4 Fc .2 1/2. -1
- & - and N = (T )
X(6.,K ) > [s; (2m0.K ) 2nE K ] X

In the above eguations, the functions Cin(X) and si(X) are defined as
(ref. 6)

sin t _ l - cos t
Si(X) = . dt and Cin(X) = \ £ dt
Yo ¥o)
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RESULTS AND DISCUSSION
MTF Calculations

Eguations (16) and (17) may now be evaluated for some specific parameter
values which are applicable to the optical receiver in a space~lab type of
scenario. A worst-case set of orbital wvalues would be for the receiver platfom
to be at an orbital height of R = 400 Km and a tangent height, Hp, of 10 Km.
At these values, we assume that the receiver is operating in a solar occulta-
tion mode where the sunrise or sunset velocity due to orbital motion is

vo= 2 Km/sec. The MTF and ¥ calculations (equations (16) and (17)) will be
done for an I.F.0.V. of BF = 0.5 x 10”3 rad , an equivalent optical receiver
aperture of DA = 2.0", and values of integration time of 7T = 0.2 sec , and
0.4 sec. Further, the value of DA = 2.0" at a wavelength of A = 11.152 um

(HNO3 line) corresponds to an optics cut-off frequency of Kc = DA/2A = 2278

cycles/radian. These parameters are compatible with the values for an ILHS type
experiment using a tunable diode laser as the L.0O. and associated optics for
coupling this type radiation to a detector having the required time-frequency
response (ref. 7).

The calculations are shown in figure 4. It can be shown that, for values
of 1T greater than roughly 0.2 sec., the optical (heterodyne) transfer function
dominates the MTF; and, for T somewhat less than 0.4 sec., the low pass
filter is the dominant frequency limiting factor. Note that the angular
frequency values can be converted to linear spatial frequency (cycles/Km) by the
relationships of equation (12) by appropriately scaling image and object space
by the ratio of image distance, di, to object distance, z. For the orbital
values assumed, z = 2262 Km and consequently a value of 2262 cycles/rad
corresponds to an object spatial frequency of 1 cycle/Km. Examination of the
MTF curves shows that resolutions of the order of 1.5-2.0 Km may be expected
for the various integration times.

Efficiency Calculations

The efficiency factor (heterodyne efficiency) given by equation (17) is
shown plotted in figure 5 for the case of the plane-wave L.O.. Two geometries
are shown: rectangular optics (as has been previously assumed) and circular
optics adjusted for equal optics and detector areas. The significance of the
abscissa (ZHGFKC) relative to heterodyne efficiency becomes apparent when it

is noted that at the value of ZHGFKC = 7.7 corresponds approximately to an

image (sun) size filling the detector of one Airy Disk of the receiver
aperture. In this region, the efficiency is in excess of 80%.
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Séﬁpling Error

The calculations shown plotted in figure 5 do not include any sampling
errors which may occur. Suppose we sample the output of the low-pass filter,
which has been modeled as a running mean integrator, at a rate of the inverse
of the integration time. This is equivalent to a sampled mean integration
scheme. ©Under this constraint, it may be shown that for certain values of T
the signal is undersampled. This results in an aliasing or foldover error
which can be significant relative to the desired signal. For example, shown in
figure 6 is the total MTF for the values of orbital and system parameters
previously stated. Two integration times are considered: T = 0.2 sec and
T = 0.4 sec. If we define the sampling error as the ratio of the "foldowver"
amplitude on the MTF plot to the amplitude of the MTF itself, i.e., a white
signal spectrum, we see that the error for 0.4 sec. is approximately 40% at
0.5 cycle/Km frequency and considerably worse for higher values of sgpatial
frequency. Conversely, for T = 0.2 sec and the correspondingly higher
sampling rate, the sampling error is negligible.

Heterodyne Receivers With Obscurations
Telescopes having central obscurations such as Cassegrains are often used
for imaging a source. If this type receiver is used as a collector for
heterodyne-type detection, one needs to compare the efficiency, ¥, and the

heterodyne transfer function, GH' with that obtained for the unobscured case.

In figure 7, we consider the effects of receiver apertures having obscura-

tion ratios of 0 and 20% for GF = 0.2 x 1073 and 0.5 x 10”3 rad. Note the
enhancement of response in the 2000 cycles/rad region at the expense of that
near 1000 cycles/rad for 20% obscuration and 6F = 0.5 x 10~3 rad. The

effects of obscurations are more pronounced for square as opposed to circular
geometries. An unobscured conventicnal MTF discussed earlier is plotted for

6_ = 0.5 x 103 rad showing a somewhat reduced frequency response
cEaracteristic from the heterodyne MTF. For a smaller detector
(6. = 0.2 x 10~3 rad ), a 20% obscuration tends to assume the shape of a

conventional MTF.

In figure 5, we assume a receiver aperture having obscuration ratios of

20% and 50%. For the values of BF and KC used earlier, X = 2ﬂ6FKc = 7.2,

and comparison of the various efficiency curves at this value shows striking
di fferences. For the 50% case, one sees that the heterodyne efficiency is
virtually zero while for the 20% case a relative efficiency of slightly
greater than 0.2 is achieved. This compares with a value of greater than 0.8
in the unobscured case. Note further there is a "peaking" of the efficiency
curves for obscured systems. The rule-of-thumb requirement of one Airy disk
on the detector for "good" efficiency no longer holds but rather the source
image needs to be less than this value to achieve the maximum efficiency for
that particular system. The effect can be explained on the basis of the
overlap integral (equation (2)) of the L.0O. field and signal field
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distributions. Thus, the 'diffracted field due to the central obscuration is
out of phase with that of the primary diffracted field and, as the size of the
detector and/or optics increases, the cancellation tends to be more complete.

CONCLUDING REMARKS

The analysis of a passive heterodyne receiver with respect to its imaging
performance (transfer function) and its heterodyne efficiency shows some
interesting departures from the results which are obtained in strictly coherent
or incoherent imaging systems. For example, the cascading property of MTF
analysis must be carefully applied since the coherent transfer function of the
optical receiver and that due to the L.O.-detector combination are not
separable but are related by the convolution of their products. Application
of these results to the specific case of a space-lab type optical heterodyne
receiver (LHS) shows that resolutions of the order of 1.5-2.0 Km are possible
for worst-case type orbital scenarios.

Further, comparison of obscured-type receivers (e.g., Cassegrains) with
unobscured receivers shows that both resolution and efficiency are severely
degraded in an obscured-type receiver and consequently should not be used for
a passive heterodyne detection scheme.
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Figure 2.- System transfer functions.

507



«H
*
\ .,/tap y ya
N L \\\_./} f\~_,977
S
6
%k
4 AN 7 ~
I t f t
-k, ke
Kg—=¢ YCLES/RADIAN
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Figure 5.- Efficiency factor, X, versus system parameter 2WBFKC for various
receiver geometries.

1.0{

0.4 SEC ,
FOLDOVER ‘

Figure 6.- Aliasing error for 2.5 Hz sampling rate at worst-case shuttle
orbit.
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