44 research outputs found

    Stellar Evolutionary Effects on the Abundances of PAH and SN-Condensed Dust in Galaxies

    Full text link
    Spectral and photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features, attributed to PAH molecules, and their metal abundance, leading to a deficiency of these features in low-metallicity galaxies. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of carbon dust into the ISM by AGB stars in the final post-AGB phase of their evolution. AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. We first determined the PAH abundance in galaxies by constructing detailed models of UV-to-radio SED of galaxies that estimate the contribution of dust in PAH-free HII regions, and PAHs and dust from photodissociation regions, to the IR emission. All model components: the galaxies' stellar content, properties of their HII regions, and their ionizing and non-ionizing radiation fields and dust abundances, are constrained by their observed multiwavelength spectrum. After determining the PAH and dust abundances in 35 nearby galaxies using our SED model, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.Comment: ApJ, 69 pages, 46 figures, Accepte

    The Asymmetric Wind in M82

    Get PDF
    We have obtained detailed imaging Fabry-Perot observations of the nearby galaxy M82, in order to understand the physical association between the high-velocity outflow and the starburst nucleus. The observed velocities of the emitting gas in M82 reveal a bipolar outflow of material, originating from the bright starburst regions in the galaxy's inner disk, but misaligned with respect to the galaxy spin axis. The deprojected outflow velocity increases with radius from 525 to 655 km/s. Spectral lines show double components in the centers of the outflowing lobes, with the H-alpha line split by ~300 km/s over a region almost a kiloparsec in size. The filaments are not simple surfaces of revolution, nor is the emission distributed evenly over the surfaces. We model these lobes as a composite of cylindrical and conical structures, collimated in the inner ~500 pc but expanding at a larger opening angle of ~25 degrees beyond that radius. We compare our kinematic model with simulations of starburst-driven winds in which disk material surrounding the source is entrained by the wind. The data also reveal a remarkably low [NII]/H-alpha ratio in the region of the outflow, indicating that photoionization by the nuclear starburst may play a significant role in the excitation of the optical filament gas, particularly near the nucleus.Comment: 42 pages AASTeX with 16 figures; accepted for publication in ApJ; figures reformatted for better printin

    A Multi-Wavelength Infrared Study of NGC 891

    Full text link
    We present a multi-wavlength infrared study of the nearby, edge-on, spiral galaxy NGC 891. We have examined 20 independent, spatially resolved IR images of this galaxy, 14 of which are newly reduced and/or previously unpublished images. These images span a wavelength regime from 1.2 microns in which the emission is dominated by cool stars, through the MIR, in which emission is dominated by PAHs, to 850 microns, in which emission is dominated by cold dust in thermal equilibrium with the radiation field. The changing morphology of the galaxy with wavelength illustrates the changing dominant components. We detect extra-planar dust emission in this galaxy, consistent with previously published results, but now show that PAH emission is also in the halo, to a vertical distance of z >= 2.5 kpc. We compare the vertical extents of various components and find that the PAHs (from 7.7 and 8 micron data) and warm dust (24 microns) extend to smaller z heights than the cool dust (450 microns). For six locations in the galaxy for which the S/N was sufficient, we present SEDs of the IR emission, including two in the halo - the first time a halo SED in an external galaxy has been presented. We have modeled these SEDs and find that the PAH fraction is similar to Galactic values (within a factor of two), with the lowest value at the galaxy's center, consistent with independent results of other galaxies. In the halo environment, the fraction of dust exposed to a colder radiation field, is of order unity, consistent with an environment in which there is no star formation. The source of excitation is likely from photons escaping from the disk.Comment: 24 pages, 17 figures, 7 tables, accepted for publication in MNRA

    Storm fronts over galaxy discs: Models of how waves generate extraplanar gas and its anomalous kinematics

    Full text link
    The existence of partially ionized, diffuse gas and dust clouds at kiloparsec scale distances above the central planes of edge-on, galaxy discs was an unexpected discovery about 20 yrs ago. Subsequent observations showed that this EDIG (extended or extraplanar diffuse interstellar gas) has rotation velocities approximately 10-20% lower than those in the central plane, and have been hard to account for. Here we present results of hydrodynamic models, with radiative cooling and heating from star formation. We find that in models with star formation generated stochastically across the disc an extraplanar gas layer is generated as long as the star formation is sufficiently strong. However, this gas rotates at nearly the same speed as the mid-plane gas. We then studied a range of models with imposed spiral or bar waves in the disc. EDIG layers were also generated in these models, but primarily over the wave regions, not over the entire disc. Because of this partial coverage, the EDIG clouds move radially, as well as vertically, with the result that observed kinematic anomalies are reproduced. The implication is that the kinematic anomalies are the result of three-dimensional motions when the cylindrical symmetry of the disc is broken. Thus, the kinematic anomalies are the result of bars or strong waves, and more face-on galaxies with such waves should have an asymmetric EDIG component. The models also indicate that the EDIG can contain a significant fraction of cool gas, and that some star formation can be triggered at considerable heights above the disc midplane. We expect all of these effects to be more prominent in young, forming discs, to play a role in rapidly smoothing disc asymmetries, and in working to self-regulate disc structure.Comment: 30 pages, 9 figs., accepted for MNRAS with additional referee correction

    Probing the Dust Properties of Galaxies at Submillimetre Wavelengths II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies

    Full text link
    We are studying the effects of submm observations on the total dust mass and thus dust-to-gas mass ratio measurements. We gather a wide sample of galaxies that have been observed at submm wavelengths to model their Spectral Energy Distributions using submm observations and then without submm observational constraints in order to quantify the error on the dust mass when submm data are not available. Our model does not make strong assumptions on the dust temperature distribution to precisely avoid submm biaises in the study. Our sample includes 52 galaxies observed at submm wavelengths. Out of these, 9 galaxies show an excess in submm which is not accounted for in our fiducial model, most of these galaxies being low- metallicity dwarfs. We chose to add an independant very cold dust component (T=10K) to account for this excess. We find that metal-rich galaxies modelled with submm data often show lower dust masses than when modelled without submm data. Indeed, these galaxies usually have dust SEDs that peaks at longer wavelengths and require constraints above 160 um to correctly position the peak and sample the submillimeter slope of their SEDs and thus correctly cover the dust temperature distribution. On the other hand, some metal-poor dwarf galaxies modelled with submm data show higher dust masses than when modelled without submm data. Using submm constraints for the dust mass estimates, we find a tightened correlation of the dust-to-gas mass ratio with the metallicity of the galaxies. We also often find that when there is a submm excess present, it occurs preferentially in low-metallicity galaxies. We analyse the conditions for the presence of this excess and find a relation between the 160/850 um ratio and the submm excess.Comment: 19 pages, 10 figures, 1 table, accepted for publication in A&

    Proguanil plus sulfamethoxazole is not causally prophylactic in the Macaca mulatta - Plasmodium cynomolgi model

    Get PDF
    New drugs for causal prophylaxis of malaria are needed. A proguanil/sulfamethoxazole combination was investigated using a rhesus monkey model (Macaca mulatta infected with Plasmodium cynomolgi) to determine whether causal prophylaxis could be achieved. When a five-day regimen of proguanil (40 mg/kg/day) combined with sulfamethoxazole (100 mg/kg/day) was used, infection of all animals (6 of 6) was observed, with an extended prepatent period (median 40 days). Two control animals became infected on days 9 and 23 following sporozoite inoculation. Plasma concentrations indicated that proguanil and sulfamethoxazole were adequately absorbed and metabolized to cycloguanil and N-4-acetylsulfamethoxazole, respectively. Analysis of liver biopsy specimens demonstrated that the drugs were present two days following sporozoite inoculation but were not detectable one week later. Proguanil plus sulfamethoxazole does not eliminate exoerythrocytic-stage parasites in the rhesus monkey-P. cynomolgi model

    Massive star formation in Wolf-Rayet galaxies: II. Optical spectroscopy results

    Full text link
    (Abridged) We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show the presence of a substantial population of very young massive stars. In this paper, the second of the series, we present the results of the analysis of long-slit intermediate-resolution spectroscopy of star-formation bursts for 16 galaxies of our sample. We study the spatial localization of the WR stars in each galaxy. We analyze the excitation mechanism and derive the reddening coefficient, physical conditions and chemical abundances of the ionized gas. We study the kinematics of the ionized gas to check the rotation/turbulence pattern of each system. When possible, tentative estimates of the Keplerian mass of the galaxies have been calculated. Our analysis has revealed that a substantial fraction of the galaxies show evidences of perturbed kinematics. With respect to the results found in individual galaxies, we remark the detection of objects with different metallicity and decoupled kinematics in Haro 15 and Mkn 1199, the finding of evidences of tidal streams in IRAS 08208+2816, Tol 9 and perhaps in SBS 1319+579, and the development of a merging process in SBS 0926+606 A and in Tol 1457-262. All these results reinforce the hypothesis that interactions with or between dwarf objects is a very important mechanism in the triggering of massive star formation in starburst galaxies, specially in dwarf ones. It must be highlighted that only deep and very detailed observationscan provide clear evidences that these subtle interaction processes are taking place.Comment: Accepted in A&A. 51 pages, 40 Figures, 19 Tables. Full Version: http://www.atnf.csiro.au/people/Angel.Lopez-Sanchez/papers/MSFinWRG_II_main_ACCEPTED_26sep09.pd

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems

    No full text
    We report the fabrication of a reconfigurable wide-band twenty-channel second-order dual filterbank, defined on a silicon-on-insulator (SOI) platform, with tunable channel spacing and 20 GHz single-channel bandwidth. We demonstrate the precise tuning of eleven (out of the twenty) channels, with a channel spacing of 124 GHz (~1 nm) and crosstalk between channels of about -45 dB. The effective thermo-optic tuning efficiency is about 27 μW/GHz/ring. A single channel of a twenty-channel counter-propagating filterbank is also demonstrated, showing that both propagating modes exhibit identical filter responses. Considerations about thermal crosstalk are also presented. These filterbanks are suitable for on-chip wavelength-division-multiplexing applications, and have the largest-to-date reported number of channels built on an SOI platform
    corecore