5,385 research outputs found

    Social health insurance

    Get PDF

    Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence

    Get PDF
    Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady-state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate over time-scales longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear-bursts are a significant driver of dynamo action in turbulent magnetoconvection

    Adherence to secondary stroke prevention strategies - Results from the German stroke data bank

    Get PDF
    Only very limited data are available concerning patient adherence to antithrombotic medication intended to prevent a recurrent stroke. Reduced adherence and compliance could significantly influence the effects of any stroke prevention strategies. This study from a large stroke data bank provides representative data concerning the rate of stroke victims adhering to their recommended preventive medication. During a 2-year period beginning January 1, 1998, all patients with acute stroke or TIA in 23 neurological departments with an acute stroke unit were included in the German Stroke Data Bank. Data were collected prospectively, reviewed, validated and processed in a central data management unit. Only 12 centers with a follow-up rate of 80% or higher were included in this evaluation. 3,420 patients were followed up after 3 months, and 2,640 patients were followed up one year after their stroke. After one year, 96% of all patients reported still adhere to at least one medical stroke prevention strategy. Of the patients receiving aspirin at discharge, 92.6% reported to use that medication after 3 months and 84% after one year, while 81.6 and 61.6% were the respective figures for clopidogrel, and 85.2 and 77.4% for oral anticoagulation. Most patients who changed medication switched from aspirin to clopidogrel. Under the conditions of this observational study, adherence to stroke prevention strategies is excellent. The highest adherence rate is noticed for aspirin and oral anticoagulation. After one year, very few patients stopped taking stroke preventive medication. Copyright (C) 2003 S. Karger AG, Basel

    Lagrangian Statistics of Navier-Stokes- and MHD-Turbulence

    Get PDF
    We report on a comparison of high-resolution numerical simulations of Lagrangian particles advected by incompressible turbulent hydro- and magnetohydrodynamic (MHD) flows. Numerical simulations were performed with up to 102431024^3 collocation points and 10 million particles in the Navier-Stokes case and 5123512^3 collocation points and 1 million particles in the MHD case. In the hydrodynamics case our findings compare with recent experiments from Mordant et al. [1] and Xu et al. [2]. They differ from the simulations of Biferale et al. [3] due to differences of the ranges choosen for evaluating the structure functions. In Navier-Stokes turbulence intermittency is stronger than predicted by a multifractal approach of [3] whereas in MHD turbulence the predictions from the multifractal approach are more intermittent than observed in our simulations. In addition, our simulations reveal that Lagrangian Navier-Stokes turbulence is more intermittent than MHD turbulence, whereas the situation is reversed in the Eulerian case. Those findings can not consistently be described by the multifractal modeling. The crucial point is that the geometry of the dissipative structures have different implications for Lagrangian and Eulerian intermittency. Application of the multifractal approach for the modeling of the acceleration PDFs works well for the Navier-Stokes case but in the MHD case just the tails are well described.Comment: to appear in J. Plasma Phy

    Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection

    Get PDF
    We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.Comment: 18 pages, 10 figures, preprin

    Functional characterisation of interferon stimulated genes in respiratory viral infection

    Get PDF
    A key element of host antiviral defence is cell intrinsic immunity, driven by an array of interferon stimulated genes (ISGs), few of which have been properly characterised. However, the breadth of ISG antiviral mechanisms suggests this gene network can target nearly every stage of a viral life cycle. Respiratory syncytial virus (RSV) is responsible for a vast number of infections, primarily in infants. Intriguingly, most infants requiring hospitalisation with a severe RSV infection present with no known risk factor. It was hypothesised that ISGs induced by RSV infection represent potential genetic risk factors that could influence virus control and disease severity between individuals. The IFN-induced transmembrane (IFITM) family of ISGs are broadly antiviral and thought to target virus entry. The data presented here expand our understanding of IFITM1 function by demonstrating that antiviral activity is dependent upon plasma membrane localisation. The in vivo relevance of IFITM1 was also probed in a monogenic knockout mouse model, for the first time demonstrating that the loss of IFITM1 alone is sufficient to result in a loss of viral control and enhanced disease severity. Next, the role of IFN-induced protein 44 (IFI44) proteins was explored as these ISGs are especially poorly characterised and are highly induced by RSV infection. There are conflicting data on the antiviral activity of IFI44 and IFI44L during RSV infection. This study presents evidence that these genes are antiviral, impacting an early point of the viral life cycle associated with reduced polymerase activity. Finally, the loss of IFI44 in vivo was shown to result in increased RSV disease severity.Open Acces

    Detection of fixed points in spatiotemporal signals by clustering method

    Full text link
    We present a method to determine fixed points in spatiotemporal signals. A 144-dimensioanl simulated signal, similar to a Kueppers-Lortz instability, is analyzed and its fixed points are reconstructed.Comment: 3 pages, 3 figure

    Transition in inclined internally heated fluid layers

    Get PDF
    Non-linear solutions and studies of their stability are presented for flows in a homogeneously heated fluid layer under the influence of a constant pressure gradient or when the mass flux across any lateral cross-section of the channel is required to vanish. The critical Grashof number is determined by a linear stability analysis of the basic state which depends only on the z-coordinate perpendicular to the boundary. Bifurcating longitudinal rolls as well as secondary solutions depending on the streamwise x-coordinate are investigated and their amplitudes are determined as functions of the supercritical Grashof number for various Prandtl numbers and angles of inclination of the layer. Solutions that emerge from a Hopf bifurcation assume the form of propagating waves and can thus be considered as steady flows relative to an appropriately moving frame of reference. The stability of these solutions with respect to three-dimensional disturbances is also analyzed in order to identify possible bifurcation points for evolving tertiary flows

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]
    • …
    corecore