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Abstract

Non-linear solutions and studies of their stability are presented for flows in a homogeneously
heated fluid layer under the influence of a constant pressure gradient or when the mass flux
across any lateral cross-section of the channel is required to vanish. The critical Grashof
number is determined by a linear stability analysis of the basic state which depends only on the
z-coordinate perpendicular to the boundary. Bifurcating longitudinal rolls as well as secondary
solutions depending on the streamwise x-coordinate are investigated and their amplitudes are
determined as functions of the supercritical Grashof number for various Prandtl numbers and
angles of inclination of the layer. Solutions that emerge from a Hopf bifurcation assume the form
of propagating waves and can thus be considered as steady flows relative to an appropriately
moving frame of reference. The stability of these solutions with respect to three-dimensional
disturbances is also analyzed in order to identify possible bifurcation points for evolving tertiary
flows.

Nomenclature

g acceleration of gravity h half channel width
q volume strength of the heat source χ angle of inclination to the horizontal
u velocity T temperature
Π pressure term ν kinematic viscosity
κ thermal diffusivity γ coefficient of thermal expansion
Pr Prandtl number (Pr = ν/κ) Gr Grashof no (Gr = (gγqh5)/(2ν2κ))

1 Introduction

This work is concerned with convection generated by uniformly distributed internal heat sources.
The study here is motivated partially by previous work, but primarily by the fact that the
present problem has many important environmental and industrial applications. Homogeneous
heat sources may be caused, for example, by radioactivity in nuclear reactors. Homogeneous
cooling at the boundaries may lead to the same mathematical problem as internal heating as
long as the fluid properties are independent of the temperature (Krishnamurti, 1968ab). The
problem of internal heat generation also arises in connection with convection in the Earth’s
mantle. Other applications include internal heating in fluids owing to the absorption of radia-
tion such as the absorption of solar radiation in planetary atmospheres. In addition the present
problem can be compared with Bénard convection, where motions are driven by temperature
differences across the fluid layer and not by homogeneous heating. The present study focuses
on the plane parallel shear flow with homogeneously distributed internal heat source with or
without the imposition of the constraint that the mass flux across any lateral section of the
channel flow is conserved. It is within this framework that internally heated parallel shear flow
with a Poiseuille component is also examined. Direct comparisons of our numerical studies
with published laboratory work of (Wilkie & Fisher, 1961) are not possible due to the various
different conditions under which the experiments were performed.
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2 Theory

We consider a viscous incompressible fluid bounded between two inclined parallel plates of
infinite extent maintained at constant temperature T = T0, where the cartesian coordinate
system is positioned in the midplane of the fluid layer of width 2h with î,ĵ the unit vectors
in the streamwise and spanwise (x, y) directions respectively. In the horizontal configuration
the unit vector k̂ points in the direction opposite to gravity and coincides with the z axis of a
Cartesian system of coordinates. For the non-dimensional description of our problem we apply
the Boussinesq approximation and we use h, h2/ν and qh2/2κGr, as the units of length, time
and temperature, respectively in order to obtain the following Navier-Stokes equations for the
velocity vector u and for the deviation T of the temperature from the state of pure conduction

∂u
∂t + (u ·∇)u = −∇Π+∆u − g

g T (1)
∂T
∂t + (u ·∇)T = 1

Pr (∆T + 2Gr) (2)

∇ · u = 0 (3)

u = 0 , T = 0 at z = ±1 (4)

The boundary conditions are reflected by eqs.(4), where for convenience we have set T0 = 0
for the fixed temperature of the boundaries, and no-slip condition at the boundaries for the
velocity field. The Grashof number gives the strength of the internal heat source and terms that
can be written as gradients have been combined into the expression ∇Π. In our formulation
the Rayleigh and Grashof numbers are related via the relation Ra = Gr ×Pr. The basic state
for the vanishing mass flux case is described by (Gershuni & Zhukhovitskii, 1976, Generalis &
Nagata 2003):

(∇ΠB) · i = −4
5Grg·i

g (5)

u = UB(z)̂i = Gr
60 sinχ(5z4 − 6z2 + 1)̂i (6)

T = TB = Gr(1 − z2). (7)

In previous work and when the Poiseuille component is considered, an alternative set of the
Navier-Stokes equations has been derived, where the boundary conditions of eqs.(4) are applied
and R = −(1/2)dΠB(x)/dx = Umaxh/ν is the Reynolds number that measures the strength
of the applied pressure gradient in the streamwise direction (Umax is the maximum laminar
velocity at midchannel for pure Poiseuille flow) (Ehrenstein & Koch 1991, Nagata & Generalis
2002):

u = UB(z)̂i = (Gr
12 sinχ(z4 − 6z2 + 5) + R(1 − z2))̂i , (8)

T = TB = Gr(1 − z2). (9)

The basic velocity profile (for eq.(8) the condition −Gr/2 ≤ R ≤ 0, Gr > 0 must be satisfied)
has two inflection points in −1 ≤ z ≤ 11 and so we can expect the steady basic state to be
linearly unstable, although the Rayleigh instability criteria are applicable only to inviscid cases.
The equations of the disturbances are presented and non-linear equilibrium states are examined
for the zero mass flux (ZMF) case only in the present work. The ZMF case corresponds to the
case where the remote ends of the channel are assumed to be closed, which in turn leads to the
condition of vanishing mass flux through the layer cross-section.

In this work we present results in the case where temperature effects are ignored (Pr = 0),
as well as when the competing thermal instability is taken into account (Pr = 0.1, 7). The

1For R > 0 these inflection points lie outside the channel width and for R < −Gr/2 there are no inflection
points.
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values of Pr = 0, 0.1, 7 are selected for the stability analysis and for the analysis of the evolving
non-linear states in the special cases χ = 0◦, 90◦. For this purpose we superimpose velocity and
temperature disturbances û,θ̂ on the basic profiles and following (Busse, 1967) we separate the
velocity and temperature disturbances into an average part (over the x, y coordinates) Ŭ(z, t),
T̆ (z, t) and a fluctuating part ŭ,θ̆ (with a vanishing average over the x, y coordinates):

û = Ŭ(z, t)i + ŭ = Ŭ (z, t)i + ∇×∇× φk + ∇× ψk, (10)

θ̂ = T̆ (z, t) + θ̆, (11)

where φ,ψ are the poloidal and toroidal parts of the velocity fluctuations respectively. For
such a decomposition the incompressibility condition is satisfied automatically, and plays no
further part in the calculations. By applying the operators δ = ∇×(∇×k·) and η = ∇×(k·) we
obtain the following equations for the poloidal φ and toroidal ψ parts of the velocity fluctuations

∂t∇2∆2φ = ∇4∆2φ− Û∂x∇2∆2φ+ (∂2
z Û)(∂x∆2φ)

+ sinχ∂2
xzθ − cosχ∆2θ − k ·∇×∇× (ŭ ·∇ŭ) (12)

∂t∆2ψ = ∇2∆2ψ + (∂zÛ)(∂y∆2φ) − Û∂x∆2ψ

+sinχ∂yθ + k ·∇× (ŭ ·∇ŭ) (13)

while we can rewrite the temperature equation in the form

∂tθ = −Û∂xθ + (∆2φ)∂z(TB + T̆ ) +
1

Pr
∇2θ − (ŭ ·∇)θ, (14)

where we have dropped the ˘ from the temperature fluctuations, ∆2 ≡ ∂2
xx + ∂2

yy is the

planform Laplacian and Û(z, t) = UB(z) + Ŭ(z, t). Details of the numerical method followed
here have been reported in (Nagata & Generalis 2002, Generalis & Nagata 2003). It is worth
noting that for an orientation of the fluid layer other than the horizontal the system of eqs.(12-
14) are solved in a moving frame of reference to account for the phase velocity of the non-linear
equilibrium state.

2.1 ZMF case: R = 0

2.1.1 Pr = 0,χ = 90◦

In this section we calculate the non-linear equilibrium solutions that develop at the Hopf bifurca-
tion points of the neutral curves as predicted by the linear analysis (Gershuni & Zhukhovitskii,
1976) due to two-dimensional disturbances (Squire’s Theorem). Finite amplitude secondary
steady solutions of eqs(12-14) can be obtained by representing φ in terms of orthogonal func-
tions that satisfy the boundary conditions (4):

φ =
L∑

l=0

M∑

m=−M

(m,n) "=(0,0)

N∑

n=−N

almn(1 − z2)2Tl(z) exp[imα(x − ct) + inβy], (15)

with similar expressions for ψ, θ. Here Tl(z) is the l-th order Chebyschev polynomial. Two
different cases have been considered here, those for Pr = 0, 7, R = 0 and for the vertical
inclination of the fluid layer (χ = 90◦). We report in this work our findings for Pr = 0 only.
Here we ignore eq.(13) and the spanwise direction in eq.(15),setting n = 0. We thus assume
ψ = ∂y = 0, but we retain eqs.(12) (poloidal part). Equations of the form (Nagata & Generalis
2002, Generalis & Nagata 2003)

Ax + BxTx = 0, (16)
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Figure 1: The stream function of the total flow for the secondary traveling wave (β = 0). Here
Gr=1850, α=2.07, Pr=0, χ = 90◦. The non-linear solution presented here corresponds to a
traveling wave (TW) with phase velocity c = 4.747 indicating that the non-linear solution is a
TW propagating upwards.

where by xi we denote collectively the unknown two-dimensional amplitudes that we evaluate
at the collocation points zi = cos((i + 1)π/(N + 2)), i = 0, · · · , N . The rank of A, B is
(L + 1)(2M + 1) and in our numerical work non-linear contributions to the phase velocity are
evaluated explicitly by a transformation into the appropriately moving frame of reference.
In Figure 1 we present the structure of the secondary flow. From Figure 1 we observe that

the flow is characterized by a sequence of transverse vortices (TR) aligned along the spanwise
direction. The two dimensional equilibrium solutions consist of two sets of (counter rotating)
vortices of positive and negative values. This creates a ’snake’-like wavy motion that oscillates
between postive and negative values of the horizontal axis z. Similar meandering effects were
observed in (Nagata & Generalis 2002, Generalis & Nagata 2003) and in the case of Poiseuille
flow in (Ehrenstein & Koch 1991).

2.1.2 Pr = 0.1, 7, χ = 0◦, R = 0

In this section we present results for the horizontal fluid layer. For this case the basic mean flow
and its nonlinear modifications vanish (for the ZMF case considered here R = 0). Moreover,
because of the horizontal isotropy the eigenvalue problem is infinitely degenerate and an infinite
number of convection patterns is possible in principle, as has been discussed in the analogous
Bénard problem by (Schlüter, Lortz & Busse, 1965). Here we just focus on the convection
patterns in the form of rolls, squares and hexagons, which are the only ones which provide
periodic coverage of the horizontal plane. Our results for the non-linear equilibrium states for
Pr = 0.1 are given in Figure 2 and for Pr = 7 are given in Figure 3 . Here

Lφ
2 = (

L∑

l=0

M∑

m=−M
(m,n) "=(0,0)

N∑

n=−N

almna∗
lmn)1/2,

with similar expressions for Lψ
2 ,Lθ

2. The subcritical state corresponding to hexagonal convection
cells with downward motion in the center (down HX) is the stable solution in contrast with the
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Figure 2: Lφ
2 -norms of the various nonlinear wave-like equilibrium solutions as functions of Ra

for Pr=0.1. The bold parts on the Lφ
2 -norm for rolls and the subcritical hexagon cells represent

the range of Ra values for which those cells are stable.
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Figure 3: Lφ
2 -norms of the various nonlinear equilibrium solutions as functions of Ra for Pr=7.

The bold part of the Lφ
2 -norm for the subcritical hexagon cells represents the range of Ra values

for which those cells are stable.
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Figure 4: Instability boundaries of secondary traveling waves for R = 0, Pr = 0,χ = 90◦. The
stable region (S) of the secondary flow is bounded by the Eckhaus (E) and Hopf bifurcation
(H) curves as indicated. For the outer Eckhaus boundary d = 0.001, while for the inner one
d = 0.01. The outer boundary corresponds to the neutral curve of the instability of the basic
flow descibed by eq.(6).

supercritical state (up HX) that our numerical studies have shown to be unstable. The com-
petition between rolls and hexagons for different values of the Prandtl number is of particular
interest. In order to demonstrate this competition we have chosen to present results for a small
value, Pr = 0.1, of the Prandtl number as well as a large one, Pr = 7. An unexpected result
of our studies is the appearence of subcritical square patterns as depicted in Figure 3. Our
studies have shown that the square patterns become subcritical for Pr < O(1), while remaining
supercritical for Pr > O(1).

3 Stability of Secondary Flows and Discussion

The method for the numerical study of the linear stability of the secondary flow against three
dimensional disturbances, in order to identify possible bifurcation points for the tertiary flow,
is provided in detail in (Nagata & Generalis 2002, Generalis & Nagata 2003). In this section
we have restricted ourselves to examining the stability of the flow for Pr = 0, 0.1, 7 and R = 0
and two orientations of the fluid layer; horizontal and vertical.
In Figure 4 we present the stability range of transverse traveling vortices for the case of the
vertical orientation of the flow channel and for Pr = 0. It is bounded by the Eckhaus and
Hopf bifurcation curves. For the Eckhaus curve, see Figure 4, which bounds the area of the
stable transverse TWs towards larger and lower wavenumbers, the spanwise Floquet parameter
assumes the value b = 0. A number of Eckhaus curves are plotted, depending on the value
of the streamwise Floquet parameter d. In the case of the vertical orientation the secondary
flow is stable in the region indicated. Maximum growth rates in the neighborhood of the Hopf
bifurcation stability boundary are obtained for d ≈ α, b = 0.2. The fact that the H-stability
boundary is characterized by σ1i = −27.72b indicates that the underlying (traveling) two-
dimensional secondary flow is replaced by an obliquely propagating three-dimensional pattern.
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Figure 5: Plots of the most dangerous eigenvalue as a function of the Floquet parameters
for the rolls of the Figure 2 Here α = 2.0,β = 0, or α = 0,β = 2.0, Pr=0.1. The value
Ra ≈ 610 is where the amplitude of the Lφ

2 of the rolls approximately exceeds that of the
subcritical hexagons of Figure 2. For Ra > 610 the rolls become stable, while the hexagons
become unstable. The values of the parameters d, b, for which maximum growth is observed,
transform the wavenumbers of the roll type cell into those of a hexagon type cell.

We next turn our attention to the horizontal configuration of the flow channel. Four forms of
convection present themselves in this case. Two correspond to hexagonal cells [up or down]
one to rolls and one to a square convective pattern. Our studies for the case Pr = 0.1 [see
also figures 2 and 5] have shown that for this case the square pattern is always unstable and
that the upper branch of the subcritical hexagonal pattern is exchanging stability with the
supercritical rolls in the same scenario described in (Busse, 1967). When the Rayleigh number
is increased the convection settles at the finite amplitude of the stable hexagon solution. In fact
the subcritical hexagonal pattern becomes stable at the upper branch (from the turning point
- see Figure 2). At approximately Ra ≈ 610 the hexagonal pattern becomes unstable. A roll
component of the hexagon grows and eventually the roll replaces the hexagon. The region of
stable hexagons ends and the region of stable rolls starts at the point where σ1r = 0 as the Ra
value increases. In Figure 5 σ1r ≈ 0 for d = 1, 1.5 ≤ b ≤ 1.7 and Ra = 610. Rolls prevail for
values up to Ra ≈ 710, where they become unstable. It appears therefore that the hexagonal
convection becomes more efficient than the roll form of convection for Ra values close to the
critical value, the latter type becoming more efficient as the Rayleigh number is increased
provided the value of the Prandtl number is small. As Pr increases hexagonal convection
becomes the predominant form of convection with the rolls being unstable, see Figure 3. As
was shown in (Busse, 1967) the range of stable hexagonal cells vanishes as the asymmetry of
material properties about the mid plane of the layer tends to zero. The selection of hexagons
can therefore be attributed to the fact that homogeneous heating provides the asymmetry that
removes the degeneracy within the framework of the Boussinesq approximation. Hexagons
were also found theoretically and experimentally to represent a stable solution near the critical
Rayleigh number by Krishnamurti (1968a,b) who used the property that homogeneous heating
is equivalent to homogeneous cooling at the top and bottom boundaries. Apparently owing to a
sign error in equ. (14) of Krishnamurti (1968a) the latter author had claimed that up-hexagons
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are preferred in contrast to down-hexagons found in the present work and by other authors.
See the discussion by Busse (1989). Hexagonal convection patterns were also observed in the
recent experiments of (Tasaka, Kudoh, Takeda & Yanasigawa, 2005), where the infinite fluid
layer was bounded by a conducting top and insulating bottom boundary. For the case where
Pr exceeds a value of the order of unity and for the case of a fluid layer heated from below it
has been shown that both types of hexagonal patterns can be stable for Ra ≈ 2×Racrit (Clever
& Busse 1996). Reorientation of the hexgonal pattern and its transition to another hexagonal
structure via the roll-route has very recently been observed experimentally in (Groh, Richter,
Rehberg, Busse 2007). This has been achieved with the application of a magnetic field that is
used to break the horizontal isotropy of the continuous system, the latter admitting the HX
pattern as the common pattern for its instability evolution. This has also been evident in the
calculations presented here but for higher values of the Prandtl number and also in the case
where the angle of inclination of the channel flow is different from 0◦. Details of the stability
properties of the internally heated flow in the case of other values of the inclination angle and
of Pr with or without the imposition of Poiseuille flow will be presented elsewhere.
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