We investigate the utility of the convex hull of many Lagrangian tracers to
analyze transport properties of turbulent flows with different anisotropy. In
direct numerical simulations of statistically homogeneous and stationary
Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD
Boussinesq convection a comparison with Lagrangian pair dispersion shows that
convex hull statistics capture the asymptotic dispersive behavior of a large
group of passive tracer particles. Moreover, convex hull analysis provides
additional information on the sub-ensemble of tracers that on average disperse
most efficiently in the form of extreme value statistics and flow anisotropy
via the geometric properties of the convex hulls. We use the convex hull
surface geometry to examine the anisotropy that occurs in turbulent convection.
Applying extreme value theory, we show that the maximal square extensions of
convex hull vertices are well described by a classic extreme value
distribution, the Gumbel distribution. During turbulent convection,
intermittent convective plumes grow and accelerate the dispersion of Lagrangian
tracers. Convex hull analysis yields information that supplements standard
Lagrangian analysis of coherent turbulent structures and their influence on the
global statistics of the flow.Comment: 18 pages, 10 figures, preprin