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ABSTRACT

Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statisti-
cally stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady state of the system is sustained
by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong
velocity and magnetic shearing generates magnetic energy at an elevated rate on time scales that are longer than the characteristic
time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear bursts are
a significant driver of dynamo action in turbulent magnetoconvection.
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1. Introduction

X-ray observations reveal that turbulent convection agitates the
outer convection layer of stars (Güdel et al. 1997; Reiners
& Basri 2007; Böhm-Vitense 2008; Simon et al. 2008).
Measurements also show that planetary magnetic fields can
change in magnitude and orientation (McFadden & Merrill
1995; Christensen et al. 2009; Stevenson 2010; Olson et al.
2011). Dynamo action driven by turbulent convection is ac-
cepted as the origin of solar and planetary magnetic fields. Key
physical processes involved in turbulent convection and impli-
cated in the amplification of magnetic fields remain to be identi-
fied and practically understood (Zeldovich et al. 1983; Biskamp
2003). Helicity, shear, and buoyancy remain intensely interest-
ing to the dynamo problem (Tobias 2009; Wicht & Tilgner 2010;
Weiss & Thompson 2009).

Because of the inherent nonlinearity of turbulent plasma
flows, theoretical explanation of dynamo action is often
approached by mean-field theory. Comparison with three-
dimensional numerical simulations verifies and inspires theoreti-
cal models (Moll et al. 2011; Schrinner et al. 2005, 2007; Wilkin
et al. 2007; Harder & Hansen 2005; Stanley & Glatzmaier
2010; Tobias et al. 2011). This work reports on a resilient
and newly identified feature of characteristic dynamo action in
three-dimensional, convectively driven, homogeneously turbu-
lent, Boussinesq magnetoconvection based on pseudospectral
direct numerical simulations using the magnetohydrodynamic
(MHD) fluid approximation (Chandrasekhar 1961).

2. Simulation

Formulation of optimal boundary conditions for simulations of
turbulent flows is delicate because boundaries strongly influence
the structure and dynamics of the flow. The commonly used

Rayleigh Bénard boundary conditions impose a temperature
gradient to drive turbulent convection by fixing the temperature
on impermeable top and bottom boundaries. For the Reynolds
and Rayleigh numbers achievable with current numerical ca-
pabilities, the convection-cell pattern imposed on the flow by
Rayleigh Bénard boundary conditions constrains the develop-
ment of buoyantly driven turbulence.

The simulation volume considered in this work is confined
by quasi-periodic rather than Rayleigh Bénard boundary con-
ditions. The only deviation from full periodicity in the quasi-
periodic boundary conditions is the explicit suppression of mean
flows parallel to gravity, which are removed at each time step.
Because our simulations are pseudospectral, the mean flow is
straightforwardly isolated as the k = 0 mode in Fourier space,
which corresponds to the volume-averaged velocity. The aim is
to combine the conceptual simplicity of statistical homogene-
ity with a physically natural convective driving of the turbulent
flow. In the flow allowed by the quasi-periodic boundary condi-
tions we identify a process, the shear burst, in our simulation,
which efficiently amplifies magnetic energy at all spatial scales
in convective turbulence. This process can be relatively subtle,
but arises in all cases considered in this work. The simulation
model we employ is idealized, but can be viewed as a volume in
an astrophysical or geophysical convective turbulent flow that is
small in comparison to the pressure scale height.

Our system allows the study of a turbulent fluctuation dy-
namo (also known as a small-scale dynamo) in detail since the
applied boundary conditions permit shear bursts on large spa-
tial and temporal scales without enforcing a large-scale struc-
turing of the turbulent flow. Hundreds of convective time scales
prove necessary for the study of the shear bursts that arise spon-
taneously in simulations of steady-state convective MHD tur-
bulence. Shear bursts are intermittent and spatially localized
around high-shear flows. They are driven primarily at multiple
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Fig. 1. Magnetic energy, EB, is significantly amplified over long times
due to repeated shear bursts in (above) simulation g1 and (below) simu-
lation g11 (parameters described in Table 1). The signature of the shear
burst, identified here with arrows, is clearly visible in the simultaneous
peaks of the magnitude of the magnetic shear tensor ∇iB j, and magnetic
stretching tensor Bi∇iu j, which have been normalized to their initial-
time values for easy comparison. The magnitude of the velocity shear
tensor ∇iv j closely follows the magnetic shear. The magnitude of these
tensors is calculated as a sum of the squares of the elements. Shear, and
therefore magnetic stretching, drive the intermittent growth of magnetic
energy.

large length scales that do not necessarily form a continuous
band in wavenumber space, and that vary between bursts. A
single isolated burst is not sufficient to maintain elevated mag-
netic energy; however, shear bursts can sometimes recur fre-
quently, as shown in Fig. 1, providing an elevated growth of
magnetic energy over significant periods of time. We address
the properties of shear bursts and their importance for the under-
standing of the fluctuation-dynamo mechanism based on obser-
vations from high-resolution direct numerical simulations that
span extended periods of time.

The non-dimensional Boussinesq equations for MHD con-
vection are

∂ω

∂t
− ∇ × (u × ω + j × B) = ν̂∇2ω − ∇θ × g0 (1)

∂B
∂t
− ∇ × (u × B) = η̂∇2B (2)

∂θ

∂t
+ (u · ∇)θ = κ̂∇2θ − (u · ∇)T0 (3)

∇ · u = ∇ · B = 0 . (4)

The equations include the solenoidal velocity field u, vorticity
ω = ∇×u, magnetic field B, and current j = ∇×B. The quantity θ
denotes the temperature fluctuation about a linear mean temper-
ature profile T0(z) where z is the direction of gravity. In Eq. (3)
this mean temperature provides the convective drive of the sys-
tem. In Eq. (1), the term including the temperature fluctuation θ
is the buoyancy force. The vector g0 is a unit vector in the direc-
tion of gravity. These equations are solved using a pseudospec-
tral method with an adaptive time integration accomplished by a
low-storage third-order Runge Kutta scheme (Williamson 1980).

Turbulent convective motion defines the characteristic time
and length scales of the system: the large-scale buoyancy time,
tb = (αg|∇T0|)−1/2 and temperature gradient length scale L =
T∗/∇T0 where T∗ is defined as the root-mean-square of tem-
perature fluctuations θ. The volume thermal expansion coeffi-
cient at constant pressure is α, and the gravitational acceleration
is g (Gibert et al. 2006; Škandera & Müller 2009). The mag-
netic field is given in Alfvénic units, with Alfvén Mach number
v0/vA = 1, v0 = L/tb. Three dimensionless parameters appear
in the equations: ν̂, η̂, and κ̂. They derive from the kinematic
viscosity ν, the magnetic diffusivity η, and thermal diffusivity κ
and can formally be identified as the reciprocal value of clas-
sical Reynolds number, magnetic Reynolds number, and Péclet
numbers, respectively (see Table 1 for definitions).

To investigate the influence of diffusivities on the shear burst
phenomena, parameters ν̂, η̂, and κ̂ are varied; consequently the
simulations probe values of the Prandtl Pr = ν̂/κ̂ and the mag-
netic Prandtl number Prm = ν̂/η̂ spread between 0.5 and 2. The
magnetic Prandtl number has been shown to exhibit a significant
effect on small-scale dynamo action (Boldyrev & Cattaneo 2004;
Schekochihin et al. 2005); the dependence of the dynamo mech-
anism on Prandtl number has been the subject of several wide-
ranging investigations (Schmalzl et al. 2002; Maron et al. 2004;
Simitev & Busse 2005). Realistically small Prandtl numbers
cannot be reached with contemporary computer capabilities; in
the solar convection zone expected values are Prm ∼ 10−4−10−7

and in the earth’s core Prm ∼ 10−6. Simultaneously, Reynolds
numbers are generally expected to be larger than can be com-
putationally reached: Re ∼ 1013 in the solar convection zone
and Re ∼ 108 in the earth’s core (summarized in Busse 2009).
Because of this discrepancy, the dynamical ranges of fluctua-
tions in modern simulations are smaller than those expected in
real systems. Our simulations thus present a first impression of
the role of shear bursts for astrophysical dynamos.

3. Results

The numerical turbulence data in this work results from a set
of simulations conducted with grid size 5123, which consti-
tutes high resolution for the extremely long times treated here.
These simulations are performed in a quasi-periodic slab or
cube; the cube has a side of 2π, and the slab has slightly larger
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Fig. 2. Total kinetic, magnetic and thermal energies during the initial
growth phase of the dynamo in simulation g2.

x- and y-directions of (2π)3/2 to allow for the well-defined ini-
tial onset of the convective instability driving the turbulence
(Chandrasekhar 1961). Our boundary conditions inhibit the for-
mation of viscous boundary layers, which appear when imper-
meable boundary conditions are employed. The dissipative coef-
ficients ν̂, η̂, and κ̂ parametrize the extent of the turbulent inertial
range of scales, and in each simulation are chosen to be as small
as possible so that the resolution constraint of kmaxηkol > 1.5
is still satisfied (Pope 2000). Here, kmax is the largest resolv-
able wavenumber allowed by numerical resolution and ηkol is
the Kolmogorov length scale. We performed simulations for the
wide range of parameters summarized in Table 1 in order to test
for a possible dependence of the shear burst phenomenon on the
Reynolds numbers and Prandtl numbers. Shear bursts occurred
in all of the simulations listed. The Rayleigh number, character-
izing the dynamical importance of buoyancy in Rayleigh-Bènard
configurations, is of limited informative value for the present
quasi-periodic system.

The initial state of the simulations contains fluctuations in
a number of small k modes for the velocity, magnetic field,
and temperature. The initial ratio of kinetic to magnetic energy
of turbulent fluctuations is 106 with the kinetic energy of or-
der unity. Figure 2 shows a typical example of the initial time-
evolution of kinetic energy Ev = V−1

∫
V dVv2/2, magnetic en-

ergy EB = V−1
∫

V dVB2, and thermal energy ET = V−1
∫

V dVθ2

taken from simulation g2. The thermal energy should be un-
derstood as the variance of temperature fluctuations. Magnetic
energy rises quickly due to small-scale dynamo action and sat-
urates at Ev/EB ≈ O(1), characteristic of the quasi-stationary
turbulent state of the MHD flow.

Fig. 3. A hot (black) flow moves vigorously along a path upward from
the bottom left corner, bending through the middle of the volume, and
eventually turning downward again, shearing against a cold (light blue)
flow. The shear along these opposing flow structures drives energy pro-
duction during a shear burst.

In Fig. 2 the global energies of the steady-state system evolve
with fluctuations due to the convective motion. After a simu-
lation reaches steady state, energies fluctuate on the order of
10%, with a period of a 1−2 buoyancy times (see also Fig. 5
of Cattaneo 1999a). During steady-state turbulent convection,
we begin to observe a pattern of spontaneous longer periods
(5−20 tb) of significant growth in the global magnetic, thermal
and kinetic energies. During the kinematic stage of the dynamo,
before steady-state convection is reached, we find no evidence
of these physically interesting periods of energy growth. The net
energy variation during one such period can differ greatly, but
we observe the energy to reach 10 times the steady-state energy
level during particularly strong instances. For example, these pe-
riods of unusually elevated energy growth occur 15 times, un-
evenly spaced over a time span of 225 tb, in the simulation g1.
We associate the growth of energy during these periods with
the shear burst phenomena. Shear bursts can occur in close se-
quence, but do not universally do so. The system can be regarded
as statistically steady over periods of time significantly longer
than the duration of a shear burst.

A shear burst centers around a period of increased growth
of magnetic energy that is accompanied by growth of both mag-
netic shear and magnetic stretching. The growth rate of magnetic
energy during a shear burst is uneven, and can vary wildly be-
tween shear bursts in the same simulation. Preceding the growth
of magnetic energy, a coherent flow structure forms that has the
appearance of high-velocity, hot or cold coherent streams, in
contrast to the typical situation with many smoothly convect-
ing plumes of hot and cold fluid. These high-energy streams be-
come strongly aligned in space, producing regions of high and
increasing velocity and magnetic shear. The nonlinear shape and
orientation of the high-energy streams differ for each shear burst,
displaying no preferred direction. The coherent flows that form
in one instance of a shear burst are depicted in Fig. 3.

Shear causes magnetic field-line stretching, and thus am-
plification of magnetic energy (Childress & Gilbert 1995;
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Table 1. Dimensionless simulation parameters.

Simulation g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

Re (×103) 3.2 5.4 5.2 5.6 2.3 5.1 4.0 2.4 1.3 6.1 2.4
Rem = PrmRe (×103) 6.4 5.4 5.2 2.8 4.0 7.7 8.0 4.2 3.9 9.8 4.8
Pe = PrRe (×103) 3.2 2.7 5.2 5.6 4.0 10.2 6.0 4.2 1.3 9.8 3.1
Pr = ν̂/κ̂ 1 0.5 1 1 1.73 2 1.5 1.76 1 1.6 1.3
Prm = ν̂/η̂ 2 1 1 0.5 1.73 1.5 2 1.76 3 1.6 2
Ra = (ν̂κ̂)−1 (×105) 2.5 2.2 2.5 4.4 1.4 2.2 1.7 0.9 0.3 3.8 1.7
kmaxηkol 2.0 1.6 1.8 1.7 2.1 2.5 2.4 3.2 4.1 1.7 2.0

Notes. Dimensionless simulation parameters include the magnetic Reynolds number Rem, Péclet number Pe, Prandtl number Pr, magnetic Prandtl
number Prm, and Rayleigh number Ra. The Reynolds number is defined as Re = 〈E1/2

v L〉/ν, where L is the instantaneous temperature gradient
length scale and the brackets indicate a time-average.
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Fig. 4. Global kinetic energy Ev, magnetic energy EB, and thermal en-
ergy ET scaled to run between 0 and 1, for the span of a typical shear
burst in simulation g8.

Cattaneo 1999b). In Fig. 1 each shear burst can be defined by
a peak in magnetic shear that correlates with an increase in mag-
netic energy. Figure 4 allows for closer inspection of the increase
of magnetic, kinetic, and thermal energies for a typical isolated
shear burst in simulation g8; between t = 225 and t = 235 the
energies increase by a factor of three. Individual shear bursts
can last from a couple buoyancy times to a couple tens of buoy-
ancy times. At the peak of magnetic and kinetic energies, high
energy hot and cold shearing is at its most vigorous. The flow
structures lose their alignment, slow down, and ultimately break-
up. The peak of global energy in Fig. 4 represents the begin-
ning of the break-up of flow structures. The break-up of the fast
streams spurs a slow decline in global energies. After the shear
burst has dissipated, the energies dissipate until the steady-state
level maintained by the fluctuation dynamo has been reached.
Shear bursts can overlap in time, and also can occur closely in
sequence, as shown in Fig. 1.

The lifetime and magnitude of the energy growth, in partic-
ular the peak in thermal energy, can vary greatly between simu-
lations and even between shear bursts in the same simulation.
This shows no apparent dependence on the Prandtl numbers.
That the Prandtl numbers do not directly impact the shear burst
phenomena is surprising because the Prandtl numbers express
the ratio of turbulent intensities and dynamic ranges of the re-
spective turbulent fields. This relationship between Prandtl num-
bers and the turbulence can be understood by relating the Prandtl
numbers to the ratios of Reynolds numbers, Pr = Pe/Re and
Prm = Rem/Re, where the Péclet number can be regarded as the
same structure as a Reynolds number for thermal fluctuations.

The characteristic length-scale of Boussinesq convection is
the Bolgiano-Obukhov length, `bo = ε5/4

v /ε3/4
T that separates

convectively-driven scales of the flow ` > `bo from the range
of scales where the temperature fluctuations behave as a passive
scalar ` < `bo. In this definition εv and εT are the kinetic and
thermal energy dissipations respectively. Typically in our con-
vection simulations `bo is comparable to the system size so only
the largest scales in the flow are convectively driven. The shear
bursts are large-scale phenomena by this classification, but are
not dominated by the convective motion. This suggests an ex-
planation for the apparent insensitivity to changes in the Prandtl
numbers.

Although insensitive to the Prandtl numbers, the shear bursts
interact nonlinearly with the turbulent environment, mainly via
large-scale magnetic structures. This is reflected in the behav-
ior of magnetic helicity, HM = V−1

∫
V dV A · B, which mea-

sures the linkage and knottiness of the magnetic field-lines
(Biskamp 2000; Moffatt 1978). A signature of the shear burst
is the growth of global magnetic helicity as the shear flows
strengthen. Magnetic helicity is not conserved in the dissipative
system we study, and this growth of magnetic helicity typically
exceeds more than a standard deviation from the average mag-
netic helicity over the time-span of the simulation. A peak of
global magnetic helicity frequently shortly precedes or coincides
with a shear burst. Figure 5 shows the typical time-evolution of
the magnetic stretching against the growth of global magnetic
helicity and magnetic helicity at the largest scales. In the time
pictured, two shear-busts occur within 5 tb, and a clear double-
peak structure is also visible in the magnetic helicity.

The magnetic helicity grows particularly in low wavenum-
bers k, associated with the growth of an isolated structure with a
strong helicity polarity; this low-k growth is a signature of an on-
going inverse spectral transfer of magnetic helicity common for
3D MHD systems (Müller et al. 2012; Biskamp 2003; Alexakis
et al. 2008). The dramatic change in the bias of magnetic helicity
in the system during one shear burst is shown in Fig. 6; in Fig. 5
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Fig. 6. (Above) probability distribution and (below) cumulative distri-
bution of local magnetic helicity, i.e. dHM = A · B in the simulation
volume before and during a shear burst event in simulation g1. During
this shear burst, as the global magnetic helicity grows, the tail of nega-
tive magnetic helicity grows, and grows much higher than the positive
tail.
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Fig. 7. Current-squared in the lowest wavenumbers k = 1, 2, 3, 4 scaled
to its initial time-value during a shear burst in simulation g2. Global
current-squared and magnetic shear are shown scaled and shifted to fit
on the same scale for reference.

the large-scale magnetic helicity of the structures spawned also
has negative polarity for the two shear bursts pictured. Large-
scale magnetic helicity structures persist longer than the high-
energy shear streams, and longer than it takes for the global en-
ergies to taper off. Because the magnetic helicity experiences an
inverse cascade and our system has small dissipation this is the-
oretically expected.

Shear bursts generate significant currents through magnetic
shear, which change the global magnetic helicity. When no shear
burst is present in the system small filaments of high current are
common and likely indicate slow reconnection on small scales.
However when a shear burst grows, large-scale high-current
structures grow at the same time. A typical growth in current
around a shear burst is shown in Fig. 7.

In simulations similar to those discussed in this work, but
performed with fully-periodic boundary conditions (sometimes
called homogenous Rayleigh Bénard boundary conditions), the
macroscopic elevator instability as it is presented by Calzavarini
et al. (2006, 2005); Škandera (2007) can be readily identified.
The elevator instability is an exact solution to the equations of
motion in the homogeneous system. It is an extreme realization
of the fact that the homogeneous, incompressible flow can gain
vast amounts of energy by coherent large-scale vertical motions.
The elevator instability creates parallel, vertical jets (kz = 0)
of alternating direction throughout the volume that significantly
degrade the quality of turbulence statistics. The flow pattern cre-
ated by this elevator instability fully destroys the original, natu-
ral flow field. The instability can be eliminated in homogeneous
Boussinesq systems by considering a horizontal mean tempera-
ture gradient (Škandera & Müller 2009).

In the quasi-periodic simulations presented in this work, we
find no evidence of this instability although we follow the simu-
lations for extremely long times. Mean flows parallel to gravity
are manually suppressed in our quasi-periodic set-up. In con-
trast to the elevator instability, shear bursts are embedded into
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the turbulence and have limited coherence and lifetime with re-
gard to the full flow-field. Shear bursts do not exhibit exponen-
tial growth of energy nor is their growth rate dependent on clear
system parameters like the Prandtl number. The shear burst is
superficially similar to the elevator instability because both in-
volve coherent flows. However, the coherent flows associated
with a shear burst do not display a preference for any fixed spa-
tial direction, but follow a sometimes complicated, curved path
in a localized section of the simulation volume. This flow path
can change during the evolution of the shear burst, and is differ-
ent for each shear burst. When the violent elevator instability is
present, it is likely to mask finer-scale processes like the shear
burst.

4. Conclusions

We have isolated a basic mechanism of dynamo action in MHD
convection that operates through spontaneously developing, in-
termittent bursts of high shear during steady-state dynamo ac-
tion. Because this process occurs in all simulations considered
here, it is of potential importance for astrophysical small-scale
dynamo action in turbulent convection scenarios. Shear bursts
consist of the formation of coherent, highly-sheared flows along-
side magnetic structures with a strong magnetic-helicity polarity
bias. The slow growth and eventual decay of the magnetic helic-
ity structure is key to the shear burst phenomenon. The increas-
ing shear causes a gradual rise in energy on all spatial scales
due to magnetic stretching in the system over several buoyancy
times. After some time, the shear flows lose their alignment and
decay. Once the shear flows are destroyed, the elevated energy
dissipates over several buoyancy times. Closely spaced shear
bursts can occur in a series, creating long periods of time where
magnetic energy is elevated significantly above the steady state.
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