We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in turbulent plane
Couette flow. Using the compound matrix technique in order to reformulate this
principle's spectral constraint, we derive a system of equations that is
amenable to numerical treatment in the entire range from low to asymptotically
high Reynolds numbers. Our variational bound exhibits a minimum at intermediate
Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a
consequence of a bifurcation of the minimizing wavenumbers, there exist two
length scales that determine the optimal upper bound: the effective width of
the variational profile's boundary segments, and the extension of their flat
interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one
uuencoded .tar.gz file from [email protected]