49 research outputs found

    Sex differences in the adult human brain:Evidence from 5216 UK Biobank participants

    Get PDF
    Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44–77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function

    Infections in hairy-cell leukemia

    No full text

    Temas literarios y sociología de la comunicación en el mundo griego: Algunas reflexiones

    No full text

    Brain structure is related to speech perception abilities in bilinguals

    No full text
    Morphology of the human brain predicts the speed at which individuals learn to distinguish novel foreign speech sounds after laboratory training. However, little is known about the neuroanatomical basis of individual differences in speech perception when a second language (L2) has been learned in natural environments for extended periods of time. In the present study, two samples of highly proficient bilinguals were selected according to their ability to distinguish between very similar L2 sounds, either isolated (prelexical) or within words (lexical). Structural MRI was acquired and processed to estimate vertex-wise indices of cortical thickness (CT) and surface area (CSA), and the association between cortical morphology and behavioral performance was inspected. Results revealed that performance in the lexical task was negatively associated with the thickness of the left temporal cortex and angular gyrus, as well as with the surface area of the left precuneus. Our findings, consistently with previous fMRI studies, demonstrate that morphology of the reported areas is relevant for word recognition based on phonological information. Further, we discuss the possibility that increased CT and CSA in sound-to-meaning mapping regions, found for poor non-native speech sounds perceivers, would have plastically arisen after extended periods of increased functional activity during L2 exposure

    Enhancement of human neutrophil functions by a monoclonal antibody directed against a 19-kDa antigen

    No full text
    A mouse IgG mAb termed P1C3 was raised against A23187-treated human peripheral blood neutrophils and has been shown to recognize an Ag with an apparent molecular mass of 19 kDa, herein named p19. This p19 Ag was weakly expressed at the cell surface of resting human peripheral blood neutrophils and monocytes, but its cell surface expression was dramatically increased upon activation of these cell types with different secretagogues, including FMLP, PMA, and the calcium ionophores A23187 and ionomycin. A large latent pool of p19 molecules became accessible by immunofluorescence flow cytometry after cell permeabilization of resting neutrophils. A practically total translocation of the intracellular pool of this p19 molecule to the plasma membrane was achieved under appropriate cell stimulation, which induced an almost total degranulation of neutrophil secretory granules. The p19 Ag was absent from platelets, PBL, as well as from the human promyelocytic cell line HL-60, the human promonocytic cell line U937, and the human lymphoid cell lines Daudi and Jurkat. The p19 Ag was also expressed by circulating and/or interstitial neutrophils and monocytes in distinct tissues examined. The mAb P1C3 was found to enhance several neutrophil responses, such as chemotaxis, cell adhesion, phagocytosis, and respiratory burst. These data indicate that the mAb P1C3 recognizes an intracellular Ag in human resting mature neutrophils and monocytes, which upon cell activation is translocated to the cell surface and is able to affect cell functionality
    corecore