1,189 research outputs found

    Head and neck target delineation using a novel PET automatic segmentation algorithm

    Get PDF
    Purpose To evaluate the feasibility and impact of using a novel advanced PET auto-segmentation method in Head and Neck (H&N) radiotherapy treatment (RT) planning. Methods ATLAAS, Automatic decision Tree-based Learning Algorithm for Advanced Segmentation, previously developed and validated on pre-clinical data, was applied to 18F-FDG-PET/CT scans of 20 H&N patients undergoing Intensity Modulated Radiation Therapy. Primary Gross Tumour Volumes (GTVs) manually delineated on CT/MRI scans (GTVpCT/MRI), together with ATLAAS-generated contours (GTVpATLAAS) were used to derive the RT planning GTV (GTVpfinal). ATLAAS outlines were compared to CT/MRI and final GTVs qualitatively and quantitatively using a conformity metric. Results The ATLAAS contours were found to be reliable and useful. The volume of GTVpATLAAS was smaller than GTVpCT/MRI in 70% of the cases, with an average conformity index of 0.70. The information provided by ATLAAS was used to grow the GTVpCT/MRI in 10 cases (up to 10.6 mL) and to shrink the GTVpCT/MRI in 7 cases (up to 12.3 mL). ATLAAS provided complementary information to CT/MRI and GTVpATLAAS contributed to up to 33% of the final GTV volume across the patient cohort. Conclusions ATLAAS can deliver operator independent PET segmentation to augment clinical outlining using CT and MRI and could have utility in future clinical studies

    Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model

    Full text link
    We investigate here the ability of a Green-Naghdi model to reproduce strongly nonlinear and dispersive wave propagation. We test in particular the behavior of the new hybrid finite-volume and finite-difference splitting approach recently developed by the authors and collaborators on the challenging benchmark of waves propagating over a submerged bar. Such a configuration requires a model with very good dispersive properties, because of the high-order harmonics generated by topography-induced nonlinear interactions. We thus depart from the aforementioned work and choose to use a new Green-Naghdi system with improved frequency dispersion characteristics. The absence of dry areas also allows us to improve the treatment of the hyperbolic part of the equations. This leads to very satisfying results for the demanding benchmarks under consideration

    Technical note: development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis

    Get PDF
    Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain by adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding 99mTc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable for use in PET

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Dilepton production in heavy ion collisions at intermediate energies

    Full text link
    We present a unified description of the vector meson and dilepton production in elementary and in heavy ion reactions. The production of vector mesons (ρ,ω\rho,\omega) is described via the excitation of nuclear resonances (RR). The theoretical framework is an extended vector meson dominance model (eVMD). The treatment of the resonance decays RNVR\longmapsto NV with arbitrary spin is covariant and kinematically complete. The eVMD includes thereby excited vector meson states in the transition form factors. This ensures correct asymptotics and provides a unified description of photonic and mesonic decays. The resonance model is successfully applied to the ω\omega production in p+pp+p reactions. The same model is applied to the dilepton production in elementary reactions (p+p,p+dp+p, p+d). Corresponding data are well reproduced. However, when the model is applied to heavy ion reactions in the BEVALAC/SIS energy range the experimental dilepton spectra measured by the DLS Collaboration are significantly underestimated at small invariant masses. As a possible solution of this problem the destruction of quantum interference in a dense medium is discussed. A decoherent emission through vector mesons decays enhances the corresponding dilepton yield in heavy ion reactions. In the vicinity of the ρ/ω\rho/\omega-peak the reproduction of the data requires further a substantial collisional broadening of the ρ\rho and in particular of the ω\omega meson.Comment: 32 pages revtex, 19 figures, to appear in PR

    Forced Solid-State Interactions for the Selective “Turn-On” Fluorescence Sensing of Aluminum Ions in Water Using a Sensory Polymer Substrate

    Get PDF
    Selective and sensitive solid sensory substrates for detecting Al(III) in pure water are reported. The material is a flexible polymer film that can be handled and exhibits gel behavior and membrane performance. The film features a chemically anchored salicylaldehyde benzoylhydrazone derivative as an aluminum ion fluorescence sensor. A novel procedure for measuring Al(III) at the ppb level using a single solution drop in 20 min was developed. In this procedure, a drop was allowed to enter the hydrophilic material for 15 min before a 5 min drying period. The process forced the Al(III) to interact with the sensory motifs within the membrane before measuring the fluorescence of the system. The limit of detection of Al(III) was 22 ppm. Furthermore, a water-soluble sensory polymer containing the same sensory motifs was developed with a limit of detection of Al(III) of 1.5 ppb, which was significantly lower than the Environmental Protection Agency recommendations for drinking water.Spanish Ministerio de Economía y Competitividad-Feder (MAT2011-22544) and by the Consejería de Educación - Junta de Castilla y León (BU232U13)

    Enhancing organisational competitiveness via social media - a strategy as practice perspective

    Get PDF
    The affordances, popularity and pervasive use of social media platforms such as Facebook, Twitter and Instagram have made these platforms attractive to organisations for enhancing their competitiveness and creating business value. Despite this apparent significance of social media for businesses, they are struggling with the development of a social media strategy as well as understanding the implications of social media on practice within their organisations. This paper explores how social media has become a tool for competitiveness and its influence on organisational strategy and practice. Using the 'strategy as practice' lens and guided by the interpretivist philosophy, this paper uses the empirical case of a telecom organisation in Tanzania. The findings show that social media is influencing competitiveness through imitation and product development. Also, the findings indicate how social media affects the practices within an organisation, consequently making the social media strategy an emergent phenomenon

    They are not all same: variations in Asian consumers' value perceptions of luxury brands

    Get PDF
    Asian markets are steadily becoming key growth regions for luxury brands. However, despite the growth, many luxury brand firms are unable to obtain the desired economic returns through their marketing strategies in Asia. Often these firms treat consumers across Asian markets as homogenous groups, which could lead to inaccurate luxury brand management strategy. Additionally, there is limited understanding of consumer value perceptions toward luxury brands across the Asian markets. Employing impression management theory and the horizontal/vertical collectivistic cultural distinctions, this study examines differences and similarities in constituent luxury value perceptions across three prominent Asian markets, namely China, India, and Indonesia. The results of a quantitative survey conducted with 626 real luxury consumers in these three countries identify variations in perceptions of symbolic, experiential, and functional value of luxury brands. The study contributes to knowledge on constituent luxury value perceptions, along with providing theoretical explanations for the differences between consumers across Asian markets. With the emerging novel insights on Asian consumers, luxury brand firms can align their marketing strategies to respective markets by leveraging the similarities and differences in consumer value perceptions. This approach, informed by empirical evidence, will enhance luxury brands’ competitiveness and profit opportunities in the high-growth Asian markets. The study identifies a number of future research directions

    Etude du comportement paramagnétique des actinides (IV) (Th, U, Np et Pu) en solution en présence de ligands

    Get PDF
    International audienceLa spectroscopie RMN est une technique capable de fournir des informations structurales sur des complexes métalliques en solution. Elle peut être appliquée à l’analyse de petites molécules en chimie organique, de protéines (macros molécules) en biologie mais aussi en chimie nucléaire avec la nucléarisation des spectromètres [1]. La présence d’un Actinide (An), avec des électrons 5f non appariés, génère une modification du spectre RMN (un élargissement et/ou une variation du déplacement chimique des pics) caractéristique du paramagnétisme du cation.Dans le cas des complexes paramagnétiques de LnIII^{III} (éléments 4ff), le déplacement chimique total ΔTOT\Delta _{TOT} est modélisé par l’équation de Bleaney (équations (a) et (b)) [2]. Il dépend du déplacement chimique paramagnétique induit δpara\delta _{para} qui peut être décomposé en deux contributions : un terme de contact δcont\delta _{cont} (délocalisation de l’électron ff sur l’atome donneur du ligand) et un terme dipolaire δdip\delta _{dip} (interaction entre le spin électronique et nucléaire à travers l’espace). A partir de ce dernier terme, on peut déduire des informations structurales en utilisant les constantes de Bleaney
    corecore