37 research outputs found

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus

    A new family of periplasmic-binding proteins that sense arsenic oxyanions

    Get PDF
    Arsenic contamination of drinking water affects more than 140 million people worldwide. While toxic to humans, inorganic forms of arsenic (arsenite and arsenate), can be used as energy sources for microbial respiration. AioX and its orthologues (ArxX and ArrX) represent the first members of a new sub-family of periplasmic-binding proteins that serve as the first component of a signal transduction system, that's role is to positively regulate expression of arsenic metabolism enzymes. As determined by X-ray crystallography for AioX, arsenite binding only requires subtle conformational changes in protein structure, providing insights into protein-ligand interactions. The binding pocket of all orthologues is conserved but this alone is not sufficient for oxyanion selectivity, with proteins selectively binding either arsenite or arsenate. Phylogenetic evidence, clearly demonstrates that the regulatory proteins evolved together early in prokaryotic evolution and had a separate origin from the metabolic enzymes whose expression they regulate

    Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Get PDF
    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini

    The chemical-in-plug bacterial chemotaxis assay is prone to false positive responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical-in-plug assays are commonly used to study bacterial chemotaxis, sometimes in the absence of stringent controls.</p> <p>Results</p> <p>We report that non-chemotactic and non-motile mutants in two distinct bacterial species (<it>Shewanella oneidensis </it>and <it>Helicobacter pylori</it>) show apparent zones of accumulation or clearing around test plugs containing potential attractants or repellents, respectively.</p> <p>Conclusions</p> <p>Our results suggest that the chemical-in-plug assay should be used with caution, that non-motile or non-chemotactic mutants should be employed as controls, and that results should be confirmed with other types of assays.</p
    corecore