5 research outputs found

    Molecular profiling of advanced soft-tissue sarcomas: the MULTISARC randomized trial

    Get PDF
    Background: Soft-tissue sarcomas (STS) represent a heterogeneous group of rare tumors including more than 70 different histological subtypes. High throughput molecular analysis (next generation sequencing exome [NGS]) is a unique opportunity to identify driver mutations that can change the usual one-size-fits-all treatment paradigm to a patient-driven therapeutic strategy. The primary objective of the MULTISARC trial is to assess whether NGS can be conducted for a large proportion of metastatic STS participants within a reasonable time, and, secondarily to determine whether a NGS-guided therapeutic strategy improves participant's outcome. Methods: This is a randomized, multicentre, phase II/III trial inspired by the design of umbrella and biomarker-driven trials. The setting plans up to 17 investigational centres across France and the recruitment of 960 participants. Participants aged at least 18 years, with unresectable locally advanced and/or metastatic STS confirmed by the French sarcoma pathological reference network, are randomized according to 1:1 allocation ratio between the experimental arm "NGS" and the standard "No NGS". NGS will be considered feasible if (i) NGS results are available and interpretable, and (ii) a report of exome sequencing including a clinical recommendation from a multidisciplinary tumor board is provided to investigators within 7 weeks from reception of the samples on the biopathological platform. A feasibility rate of more than 70% is expected (null hypothesis: 70% versus alternative hypothesis: 80%). In terms of care, participants randomized in "No NGS" arm and who fail treatment will be able to switch to the NGS arm at the request of the investigator. Discussion: The MULTISARC trial is a prospective study designed to provide high-level evidence to support the implementation of NGS in routine clinical practice for advanced STS participants, on a large scale. Trial registration: clinicaltrial.gov NCT03784014

    Inhaled ciclesonide for outpatient treatment of COVID-19 in adults at risk of adverse outcomes: a randomised controlled trial (COVERAGE)

    Get PDF
    International audienceObjectives: To assess the efficacy of inhaled ciclesonide in reducing the risk of adverse outcomes in COVID-19 outpatients at risk of developing severe illness.Methods: COVERAGE is an open-label, randomized controlled trial. Outpatients with documented COVID-19, risk factors for aggravation, symptoms for ≀7 days, and absence of criteria for hospitalization are randomly allocated to either a control arm or one of several experimental arms, including inhaled ciclesonide. The primary efficacy endpoint is COVID-19 worsening (hospitalization, oxygen therapy at home, or death) by Day 14. Other endpoints are adverse events, maximal follow-up score on the WHO Ordinal Scale for Clinical Improvement, sustained alleviation of symptoms, cure, and RT-PCR and blood parameter evolution at Day 7. The trial's Safety Monitoring Board reviewed the first interim analysis of the ciclesonide arm and recommended halting it for futility. The results of this analysis are reported here.Results: The analysis involved 217 participants (control 107, ciclesonide 110), including 111 women and 106 men. Their median age was 63 years (interquartile range 59-68), and 157 of 217 (72.4%) had at least one comorbidity. The median time since first symptom was 4 days (interquartile range 3-5). During the 28-day follow-up, 2 participants died (control 2/107 [1.9%], ciclesonide 0), 4 received oxygen therapy at home and were not hospitalized (control 2/107 [1.9%], ciclesonide 2/110 [1.8%]), and 24 were hospitalized (control 10/107 [9.3%], ciclesonide 14/110 [12.7%]). In intent-to-treat analysis of observed data, 26 participants reached the composite primary endpoint by Day 14, including 12 of 106 (11.3%, 95% CI: 6.0%-18.9%) in the control arm and 14 of 106 (13.2%; 95% CI: 7.4-21.2%) in the ciclesonide arm. Secondary outcomes were similar for both arms.Discussion: Our findings are consistent with the European Medicines Agency's COVID-19 task force statement that there is currently insufficient evidence that inhaled corticosteroids are beneficial for patients with COVID-19

    Ritonavir-boosted darunavir combined with raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults infected with HIV-1: 96 week results from the NEAT001/ANRS143 randomised non-inferiority trial.

    No full text
    International audienceStandard first-line antiretroviral therapy for HIV-1 infection includes two nucleoside or nucleotide reverse transcriptase inhibitors (NtRTIs), but these drugs have limitations. We assessed the 96 week efficacy and safety of an NtRTI-sparing regimen. Between August, 2010, and September, 2011, we enrolled treatment-naive adults into this randomised, open-label, non-inferiority trial in treatment-naive adults in 15 European countries. The composite primary outcome was change to randomised treatment before week 32 because of insufficient virological response, no virological response by week 32, HIV-1 RNA concentration 50 copies per mL or higher at any time after week 32; death from any cause; any new or recurrent AIDS event; or any serious non-AIDS event. Patients were randomised in a 1:1 ratio to receive oral treatment with 400 mg raltegravir twice daily plus 800 mg darunavir and 100 mg ritonavir once daily (NtRTI-sparing regimen) or tenofovir-emtricitabine in a 245 mg and 200 mg fixed-dose combination once daily, plus 800 mg darunavir and 100 mg ritonavir once daily (standard regimen). This trial was registered with ClinicalTrials.gov, number NCT01066962. Of 805 patients enrolled, 401 received the NtRTI-sparing regimen and 404 the standard regimen, with median follow-up of 123 weeks (IQR 112-133). Treatment failure was seen in 77 (19%) in the NtRTI-sparing group and 61 (15%) in the standard group. Kaplan-Meier estimated proportions of treatment failure by week 96 were 17·8% and 13·8%, respectively (difference 4·0%, 95% CI -0·8 to 8·8). The frequency of serious or treatment-modifying adverse events were similar (10·2 vs 8·3 per 100 person-years and 3·9 vs 4·2 per 100 person-years, respectively). Our NtRTI-sparing regimen was non-inferior to standard treatment and represents a treatment option for patients with CD4 cell counts higher than 200 cells per ΌL. European Union Sixth Framework Programme, Inserm-ANRS, Gilead Sciences, Janssen Pharmaceuticals, Merck Laboratories

    Antiretroviral resistance at virological failure in the NEAT 001/ANRS 143 trial: Raltegravir plus darunavir/ritonavir or tenofovir/emtricitabine plus darunavir/ritonavir as first-line ART

    No full text
    Objectives: To describe the pattern of drug resistance at virological failure in the NEAT001/ANRS143 trial (first-line treatment with ritonavir-boosted darunavir plus either tenofovir/emtricitabine or raltegravir). Methods: Genotypic testing was performed at baseline for reverse transcriptase (RT) and protease genes and for RT, protease and integrase (IN) genes for patients with a confirmed viral load (VL) >50 copies/mL or any single VL >500 copies/mL during or after week 32. Results: A resistance test was obtained for 110/805 (13.7%) randomized participants qualifying for resistance analysis (61/401 of participants in the raltegravir arm and 49/404 of participants in the tenofovir/emtricitabine arm). No resistance-associated mutation (RAM) was observed in the tenofovir/emtricitabine plus darunavir/ritonavir arm, and all further analyses were limited to the raltegravir plus darunavir arm. In this group, 15/55 (27.3%) participants had viruses with IN RAMs (12 N155H alone, 1 N155H + Q148R, 1 F121Y and 1 Y143C), 2/53 (3.8%) with nucleotide analogue RT inhibitor RAMs (K65R, M41L) and 1/57 (1.8%) with primary protease RAM (L76V). The frequency of IN mutations at failure was significantly associated with baseline VL: 7.1% for a VL of TREND = 0.007). Of note, 4/15 participants with IN RAM had a VL <200 copies/mL at time of testing. Conclusions: In the NEAT001/ANRS143 trial, there was no RAM at virological failure in the standard tenofovir/emtricitabine plus darunavir/ritonavir regimen, contrasting with a rate of 29.5% (mostly IN mutations) in the raltegravir plus darunavir/ritonavir NRTI-sparing regimen. The cumulative risk of IN RAM after 96 weeks of follow-up in participants initiating ART with raltegravir plus darunavir/ritonavir was 3.9%

    Population pharmacokinetics and pharmacogenetics of ritonavir-boosted darunavir in the presence of raltegravir or tenofovir disoproxil fumarate/emtricitabine in HIV-infected adults and the relationship with virological response : a sub-study of the NEAT001/ANRS143 randomized trial

    No full text
    OBJECTIVES: NEAT001/ANRS143 demonstrated non-inferiority of once-daily darunavir/ritonavir (800/100 mg) + twice-daily raltegravir (400 mg) versus darunavir/ritonavir + tenofovir disoproxil fumarate/emtricitabine (245/200 mg once daily) in treatment-naive patients. We investigated the population pharmacokinetics of darunavir, ritonavir, tenofovir and emtricitabine and relationships with demographics, genetic polymorphisms and virological failure. METHODS: Non-linear mixed-effects models (NONMEM v. 7.3) were applied to determine pharmacokinetic parameters and assess demographic covariates and relationships with SNPs (SLCO3A1, SLCO1B1, NR1I2, NR1I3, CYP3A5*3, CYP3A4*22, ABCC2, ABCC10, ABCG2 and SCL47A1). The relationship between model-predicted darunavir AUC0-24 and C24 with time to virological failure was evaluated by Cox regression. RESULTS: Of 805 enrolled, 716, 720, 347 and 361 were included in the darunavir, ritonavir, tenofovir and emtricitabine models, respectively (11% female, 83% Caucasian). No significant effect of patient demographics or SNPs was observed for darunavir or tenofovir apparent oral clearance (CL/F); coadministration of raltegravir did not influence darunavir or ritonavir CL/F. Ritonavir CL/F decreased by 23% in NR1I2 63396C>T carriers and emtricitabine CL/F was linearly associated with creatinine clearance (P < 0.001). No significant relationship was demonstrated between darunavir AUC0-24 or C24 and time to virological failure [HR (95% CI): 2.28 (0.53-9.80), P = 0.269; and 1.82 (0.61-5.41), P = 0.279, respectively]. CONCLUSIONS: Darunavir concentrations were unaltered in the presence of raltegravir and not associated with virological failure. Polymorphisms investigated had little impact on study-drug pharmacokinetics. Darunavir/ritonavir + raltegravir may be an appropriate option for patients experiencing NRTI-associated toxicity
    corecore