731 research outputs found

    Optical properties of nanocrystalline ZnO thin films grown using pulsed laser deposition

    Get PDF
    Raman spectroscopy, x-ray diffractometry, atomic force microscopy, photoluminescence spectroscopy and reflectance spectroscopy have been used to characterize ZnO thin films grown by pulsed laser deposition as a function of the post-growth annealing temperature. Raman results show enhancement and broadening of certain Raman features which correlate with changes in the widths of the x-ray diffraction peaks for samples with varying grain size in the 50-100 nm range. These data suggest that electric fields, arising from charge trapping at grain boundaries, in conjunction with localised and surface phonon modes, are the cause of the intensity enhancement and asymmetry of the Raman features. Band-edge photoluminescence and reflectance spectra also altered considerably with increases in grain size, showing clearly observable excitonic structure in the reflectance spectra. An analysis using a deformation potential Hamiltonian demonstrates that the experimental exciton energies are not explicable solely in terms of sample strain and give additional evidence for electric fields in the samples due to charge trapping at grain boundaries. This is supported by theoretical estimates of the exciton energy perturbation due to electric fields and also by the behaviour of the green band in the samples. Detailed studies show that reflectance spectra in nanocrystalline ZnO differ substantially from bulk material. Interaction of excitons, damped by strong electric field effects, with photons leads to exciton-polaritons with substantial damping, eliminating the normal Fabry-Perot structure seen in thin films. Good qualitative agreement is achieved between the model and data and the conclusions are also in good agreement with the photoluminescence and Raman data. Finally, high intensity optical pumping data of these samples again shows a dependence on grain size. All samples show evidence of high excitation effects and the sample with the largest grain size displays random lasing at room temperature. All our results indicate the very strong influence of electric fields due to charge trapping at grain boundaries on the optical properties of nanocrystalline ZnO

    Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Get PDF
    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals

    Understanding a Low Vitamin D State in the Context of COVID-19

    Get PDF
    While a low vitamin D state has been associated with an increased risk of infection by SARS-CoV-2 in addition to an increased severity of COVID-19 disease, a causal role is not yet established. Here, we review the evidence relating to i) vitamin D and its role in SARS-CoV-2 infection and COVID-19 disease ii) the vitamin D status in the Irish adult population iii) the use of supplemental vitamin D to treat a deficient status and iv) the application of the Bradford-Hill causation criteria. We conclude that reverse causality probably makes a minimal contribution to the presence of low vitamin D states in the setting of COVID-19. Applying the Bradford-Hill criteria, however, the collective literature supports a causal association between low vitamin D status, SARS-CoV-2 infection, and severe COVID-19 (respiratory failure, requirement for ventilation and mortality). A biologically plausible rationale exists for these findings, given vitamin D’s role in immune regulation. The thresholds which define low, deficient, and replete vitamin D states vary according to the disease studied, underscoring the complexities for determining the goals for supplementation. All are currently unknown in the setting of COVID-19. The design of vitamin D randomised controlled trials is notoriously problematic and these trials commonly fail for a number of behavioural and methodological reasons. In Ireland, as in most other countries, low vitamin D status is common in older adults, adults in institutions, and with obesity, dark skin, low UVB exposure, diabetes and low socio-economic status. Physiological vitamin D levels for optimal immune function are considerably higher than those that can be achieved from food and sunlight exposure alone in Ireland. A window exists in which a significant number of adults could benefit from vitamin D supplementation, not least because of recent data demonstrating an association between vitamin D status and COVID-19. During the COVID pandemic, we believe that supplementation with 20-25ug (800–1000 IU)/day or more may be required for adults with apparently normal immune systems to improve immunity against SARS-CoV-2. We expect that higher monitored doses of 37.5–50 ug (1,500–2,000)/day may be needed for vulnerable groups (e.g., those with obesity, darker skin, diabetes mellitus and older adults). Such doses are within the safe daily intakes cited by international advisory agencies

    Correlation of Raman and X-Ray Diffraction Measurements of Annealed Pulsed Laser Deposited ZnO Thin Films.

    Get PDF
    Raman spectroscopy, X-ray diffractometry and atomic force microscopy have been used to characterise ZnO thin films grown by pulsed laser deposition as a function of the post-growth annealing temperature. The results show substantial enhancement and broadening of certain Raman features which correlate excellently with the change in width of the X-ray diffraction peaks. The 570 cm[-1] Raman feature showed pronounced asymmetry and enhanced intensity in the unannealed sample. An increase in grain size observed after subsequent annealing produced a substantial reduction in both the asymmetry and intensity of this peak. Our experimental data suggest that electric fields, due to charge trapping at grain boundaries, in conjunction with localised and surface phonon modes are the cause of the intensity enhancement and asymmetry of this feature

    Examining the cognitive costs of counterfactual language comprehension: evidence from ERPs

    Get PDF
    Recent empirical research suggests that understanding a counterfactual event (e.g. If Josie had revised, she would have passed her exams) activates mental representations of both the factual and counterfactual versions of events. However, it remains unclear when readers switch between these models during comprehension, and whether representing multiple 'worlds' is cognitively effortful. This paper reports two ERP studies where participants read contexts that set up a factual or counterfactual scenario, followed by a second sentence describing a consequence of this event. Critically, this sentence included a noun that was either consistent or inconsistent with the preceding context, and either included a modal verb to indicate reference to the counterfactual-world or not (thus referring to the factual-world). Experiment 2 used adapted versions of the materials used in Experiment 1 to examine the degree to which representing multiple versions of a counterfactual situation makes heavy demands on cognitive resources by measuring individuals' working memory capacity. Results showed that when reference to the counterfactual-world was maintained by the ongoing discourse, readers correctly interpreted events according to the counterfactual-world (i.e. showed larger N400 for inconsistent than consistent words). In contrast, when cues referred back to the factual-world, readers showed no difference between consistent and inconsistent critical words, suggesting that they simultaneously compared information against both possible worlds. These results support previous dual-representation accounts for counterfactuals, and provide new evidence that linguistic cues can guide the reader in selecting which world model to evaluate incoming information against. Crucially, we reveal evidence that maintaining and updating a hypothetical model over time relies upon the availability of cognitive resources

    Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers

    Get PDF
    Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.</p

    Chaste : Cancer, Heart and Soft Tissue Environment

    Get PDF
    Funding: UK Engineering and Physical Sciences Research Council [grant number EP/N509711/1 (J.K.)].Chaste (Cancer, Heart And Soft Tissue Environment) is an open source simulation package for the numerical solution of mathematical models arising in physiology and biology. To date, Chaste development has been driven primarily by applications that include continuum modelling of cardiac electrophysiology (‘Cardiac Chaste’), discrete cell-based modelling of soft tissues (‘Cell-based Chaste’), and modelling of ventilation in lungs (‘Lung Chaste’). Cardiac Chaste addresses the need for a high-performance, generic, and verified simulation framewor kfor cardiac electrophysiology that is freely available to the scientific community. Cardiac chaste provides a software package capable of realistic heart simulations that is efficient, rigorously tested, and runs on HPC platforms. Cell-based Chaste addresses the need for efficient and verified implementations of cell-based modelling frameworks, providing a set of extensible tools for simulating biological tissues. Computational modelling, along with live imaging techniques, plays an important role in understanding the processes of tissue growth and repair. A wide range of cell-based modelling frameworks have been developed that have each been successfully applied in a range of biological applications. Cell-based Chaste includes implementations of the cellular automaton model, the cellular Potts model, cell-centre models with cell representations as overlapping spheres or Voronoi tessellations, and the vertex model. Lung Chaste addresses the need for a novel, generic and efficient lung modelling software package that is both tested and verified. It aims to couple biophysically-detailed models of airway mechanics with organ-scale ventilation models in a package that is freely available to the scientific community.Publisher PDFPeer reviewe
    • …
    corecore