107 research outputs found

    Reactive oxygen species induce virus-independent MAVS-oligomerization in systemic lupus erythematosus

    Get PDF
    The increased expression of genes induced by type I interferon (IFN) is characteristic of viral infections and systemic lupus erythematosus (SLE). We showed that mitochondrial antiviral signaling (MAVS) protein, which normally forms a complex with retinoic acid gene I (RIG-I)–like helicases during viral infection, was activated by oxidative stress independently of RIG-I helicases. We found that chemically generated oxidative stress stimulated the formation of MAVS oligomers, which led to mitochondrial hyperpolarization and decreased adenosine triphosphate production and spare respiratory capacity, responses that were not observed in similarly treated cells lacking MAVS. Peripheral blood lymphocytes of SLE patients also showed spontaneous MAVS oligomerization that correlated with the increased secretion of type I IFN and mitochondrial oxidative stress. Furthermore, inhibition of mitochondrial reactive oxygen species (ROS) by the mitochondria-targeted antioxidant MitoQ prevented MAVS oligomerization and type I IFN production. ROS-dependent MAVS oligomerization and type I IFN production were reduced in cells expressing the MAVS-C79F variant, which occurs in 30% of sub-Saharan Africans and is linked with reduced type I IFN secretion and milder disease in SLE patients. Patients expressing the MAVS-C79F variant also had reduced amounts of oligomerized MAVS in their plasma compared to healthy controls. Together, our findings suggest that oxidative stress–induced MAVS oligomerization in SLE patients may contribute to the type I IFN signature that is characteristic of this syndrome

    Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice.

    Get PDF
    OBJECTIVES: Recent investigations in humans and mouse models with lupus have revealed evidence of mitochondrial dysfunction and production of mitochondrial reactive oxygen species (mROS) in T cells and neutrophils. This can provoke numerous cellular changes including oxidation of nucleic acids, proteins, lipids and even induction of cell death. We have previously observed that in T cells from patients with lupus, the increased mROS is capable of provoking oligomerisation of mitochondrial antiviral stimulator (MAVS) and production of type I interferon (IFN-I). mROS in SLE neutrophils also promotes the formation of neutrophil extracellular traps (NETs), which are increased in lupus and implicated in renal damage. As a result, in addition to traditional immunosuppression, more comprehensive treatments for lupus may also include non-immune therapy, such as antioxidants. METHODS: Lupus-prone MRL-lpr mice were treated from weaning for 11 weeks with the mitochondria-targeted antioxidant, MitoQ (200 µM) in drinking water. Mice were then assessed for ROS production in neutrophils, NET formation, MAVS oligomerisation, serum IFN-I, autoantibody production and renal function. RESULTS: MitoQ-treated mice manifested reduced neutrophil ROS and NET formation, decreased MAVS oligomerisation and serum IFN-I, and reduced immune complex formation in kidneys, despite no change in serum autoantibody . CONCLUSIONS: These findings reveal the potential utility of targeting mROS in addition to traditional immunosuppressive therapy for lupus

    Structures of SRP54 and SRP19, the Two Proteins that Organize the Ribonucleic Core of the Signal Recognition Particle from Pyrococcus furiosus

    Get PDF
    In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 Å resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely α-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 Å resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19•SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP

    Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes

    Get PDF
    The cytotoxin colicin E3 targets the 30S subunit of bacterial ribosomes and specifically cleaves 16S rRNA at the decoding centre, thereby inhibiting translation. Although the cleavage site is well known, it is not clear which step of translation is inhibited. We studied the effects of colicin E3 cleavage on ribosome functions by analysing individual steps of protein synthesis. We find that the cleavage affects predominantly the elongation step. The inhibitory effect of colicin E3 cleavage originates from the accumulation of sequential impaired decoding events, each of which results in low occupancy of the A site and, consequently, decreasing yield of elongating peptide. The accumulation leads to an almost complete halt of translation after reading of a few codons. The cleavage of 16S rRNA does not impair monitoring of codon–anticodon complexes or GTPase activation during elongation-factor Tu-dependent binding of aminoacyl-tRNA, but decreases the stability of the codon–recognition complex and slows down aminoacyl-tRNA accommodation in the A site. The tRNA–mRNA translocation is faster on colicin E3-cleaved than on intact ribosomes and is less sensitive to inhibition by the antibiotic viomycin

    Functional conservation between structurally diverse ribosomal proteins from Drosophila melanogaster and Saccharomyces cerevisiae: fly L23a can substitute for yeast L25 in ribosome assembly and function

    Get PDF
    The proposed Drosophila melanogaster L23a ribosomal protein features a conserved C-terminal amino acid signature characteristic of other L23a family members and a unique N-terminal extension [Koyama et al. (Poly(ADP-ribose) polymerase interacts with novel Drosophila ribosomal proteins, L22 and l23a, with unique histone-like amino-terminal extensions. Gene 1999; 226: 339–345)], absent from Saccharomyces cerevisiae L25 that nearly doubles the size of fly L23a. The ability of fly L23a to replace the role of yeast L25 in ribosome biogenesis was determined by creating a yeast strain carrying an L25 chromosomal gene disruption and a plasmid-encoded FLAG-tagged L23a gene. Though affected by a reduced growth rate, the strain is dependent on fly L23a-FLAG function for survival and growth, demonstrating functional compatibility between the fly and yeast proteins. Pulse-chase experiments reveal a delay in rRNA processing kinetics, most notably at a late cleavage step that converts precursor 27S rRNA into mature 25S rRNA, likely contributing to the strain's slower growth pattern. Yet, given the essential requirement for L23(a)/L25 in ribosome biogenesis, there is a remarkable tolerance for accommodating the fly L23a N-terminal extension within the structure of the yeast ribosome. A search of available databases shows that the unique N-terminal extension is shared by multiple insect lineages. An evolutionary perspective on L23a structure and function within insect lineages is discussed

    Sequence-specific interactions of nascent Escherichia coli polypeptides with trigger factor and signal recognition particle.

    Get PDF
    As nascent polypeptides exit the ribosomal tunnel they immediately associate with chaperones, folding catalysts, and targeting factors. These interactions are decisive for the future conformation and destination of the protein that is being synthesized. Using Escherichia coli as a model organism, we have systematically analyzed how the earliest contacts of nascent polypeptides with cytosolic factors depend on the nature and future destination of the emerging sequence using a photo cross-linking approach. Together, the data suggest that the chaperone trigger factor is adjacent to emerging sequences by default, consistent with both its placement near the nascent chain exit site and its cellular abundance. The signal recognition particle (SRP) effectively competes the contact with TF when a signal anchor (SA) sequence of a nascent inner membrane protein appears outside the ribosome. The SRP remains in contact with the SA and downstream sequences during further synthesis of ∼30 amino acids. The contact with trigger factor is then restored unless another transmembrane segment reinitiates SRP binding. Importantly and in contrast to published data, the SRP appears perfectly capable of distinguishing SA sequences from signal sequences in secretory proteins at this early stage in biogenesis. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    6DV2S_II_A

    No full text
    1. The file SolutionData.doc contains the sets of solutions for the cases analysed in the manuscript. 2. The notebook 4Bar3Points_6DV2S_II_A.nb created in Wolfram Mathematica 8.0 is the code of the algorithm 6DV2S_II for determining the mechanism dimensions from output data of the algorithm 6DV2S_II and for the results visualisation. 3. The pdf file of this notebook is also available. 4. The zip file SupplFigs contains the figures of the spring extensions and the rates of the spring extensions for all the cases except for I.A.1. The name of the figure addresses the adequate case

    Age-Associated Changes in Estrogen Receptor Ratios Correlate with Increased Female Susceptibility to Coxsackievirus B3-Induced Myocarditis

    No full text
    Sexual bias is a hallmark in various diseases. This review evaluates sexual dimorphism in clinical and experimental coxsackievirus B3 (CVB3) myocarditis, and how sex bias in the experimental disease changes with increased age. Coxsackieviruses are major causes of viral myocarditis, an inflammation of the heart muscle, which is more frequent and severe in men than women. Young male mice infected with CVB3 develop heart-specific autoimmunity and severe myocarditis. Females infected during estrus (high estradiol) develop T-regulatory cells and when infected during diestrus (low estradiol) develop autoimmunity similar to males. During estrus, protection depends on estrogen receptor alpha (ERα), which promotes type I interferon, activation of natural killer/natural killer T cells and suppressor cell responses. Estrogen receptor beta has opposing effects to ERα and supports pro-inflammatory immunity. However, the sexual dimorphism of the disease is significantly ameliorated in aged animals when old females become as susceptible as males. This correlates to a selective loss of the ERα that is required for immunosuppression. Therefore, sex-associated hormones control susceptibility in the virus-mediated disease, but their impact can alter with the age and physiological stage of the individual
    corecore