273 research outputs found
Targeting tumor necrosis factor alpha to mitigate lung injury induced by mustard vesicants and radiation
: Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis
The Gas Sensing Properties of Porphyrins-coated Laterally Grown ZnO Nanorods
AbstractPorphyrins coated ZnO is an interesting material where the exposure to light and gas may cooperate to modulate the respective sensitivities. In this work, the gas sensing properties of porphyrins functionalized laterally grown ZnO nanorods are introduced. The porphyrin layer incompletely coats the semiconductor surface in order to keep both ZnO and porphyrins in contact with analyte. It is known that UV light may prompt the chemical sensitivity of ZnO replacing the high temperature condition. Here we demonstrate that because of the photo-injection of electrons from porphyrin to the ZnO, the same impact could be acquired with visible light
High-resolution velocity measurements on fully identified light nuclides produced in 56Fe + hydrogen and 56Fe + titanium systems
New experimental results on the kinematics and the residue production are
obtained for the interactions of 56Fe projectiles with protons and (nat)Ti
target nuclei, respectively, at theincident energy of 1 A GeV. The
titanium-induced reaction serves as a reference case for multifragmentation.
Already in the proton-induced reaction, the characteristics of the isotopic
cross sections and the shapes of the velocity spectra of light residues
indicate that high thermal energy is deposited in the system during the
collision. In the 56Fe+p system the high excitation seems to favour the onset
of fast break-up decays dominated by very asymmetric partitions of the
disassembling system. This configuration leads to the simultaneous formation of
one or more light fragments together with one heavy residue.Comment: 24 pages, 21 figures, 1 table, this work forms part of the PhD thesis
of P.Napolitani, background information on http://www-w2k.gsi.de/kschmidt
Controlling the Cassie-to-Wenzel Transition: an Easy Route towards the Realization of Tridimensional Arrays of Biological Objects
In this paper we provide evidence that the Cassie-to-Wenzel transition, despite its detrimental effects on the wetting properties of superhydrophobic surfaces, can be exploited as an effective micro-fabrication strategy to obtain highly ordered arrays of biological objects. To this purpose we fabricated a patterned surface wetted in the Cassie state, where we deposited a droplet containing genomic DNA. We observed that, when the droplet wets the surface in the Cassie state, an array of DNA filaments pinned on the top edges between pillars is formed. Conversely, when the Cassie-to-Wenzel transition occurs, DNA can be pinned at different height between pillars. These results open the way to the realization of tridimensional arrays of biological objects
Blueberry counteracts bv-2 microglia morphological and functional switch after lps challenge
Microglia, the innate immune cells of the CNS, respond to brain injury by activating and modifying their morphology. Our study arises from the great interest that has been focused on blueberry (BB) for the antioxidant and pharmacological properties displayed by its components. We analyzed the influence of hydroalcoholic BB extract in resting or lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. BB exerted a protective effect against LPS-induced cytotoxicity, as indicated by cell viability. BB was also able to influence the actin cytoskeleton organization, to recover the control phenotype after LPS insult, and also to reduce LPS-driven migration. We evaluated the activity of Rho and Rac1 GTPases, which regulate both actin cytoskeletal organization and migratory capacity. LPS caused an increase in Rac1 activity, which was counteracted by BB extract. Furthermore, we demonstrated that, in the presence of BB, mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α decreased, as did the immunofluorescence signal of iNOS, whereas that of Arg-1 was increased. Taken together, our results show that, during the inflammatory response, BB extract shifts the M1 polarization towards the M2 phenotype through an actin cytoskeletal rearrangement. Based on that, we might consider BB as a nutraceutical with anti-inflammatory activities
Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon
We present an extensive overview of production cross sections and kinetic
energies for the complete set of nuclides formed in the spallation of 136Xe by
protons at the incident energy of 1 GeV per nucleon. The measurement was
performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt).
Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the
largest neutron excess. The kinematic data and cross sections collected in this
work for the full nuclide production are a general benchmark for modelling the
spallation process in a neutron-rich nuclear system, where fission is
characterised by predominantly mass-asymmetric splits.Comment: 18 pages, 14 figure
Fission and cluster decay of Sr nucleus in the ground-state and formed in heavy-ion reactions
Calculations for fission and cluster decay of are presented for
this nucleus to be in its ground-state or formed as an excited compound system
in heavy-ion reactions. The predicted mass distribution, for the dynamical
collective mass transfer process assumed for fission of , is clearly
asymmetric, favouring -nuclei. Cluster decay is studied within a
preformed cluster model, both for ground-state to ground-state decays and from
excited compound system to the ground-state(s) or excited states(s) of the
fragments.Comment: 14 pages LaTeX, 5 Figures available upon request Submitted to Phys.
Rev.
A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides
We report on a novel lithographic approach for the fabrication of integrated quantum dot (QD)-photonic crystal (PhC) nanocavity systems. We exploit unique hydrogen's ability to tailor the band gap energy of dilute nitride semiconductors to fabricate isolated site-controlled QDs via a spatially selective hydrogenation at the nanometer-scale. A deterministic integration of the realized site-controlled QDs with PhC nanocavities is provided by the inherent realignment precision (~ 20 nm) of the electron beam lithography system used for the fabrication of both QDs and PhC cavities. A detailed description of the fabrication steps leading to the realization of integrated QD-PhC cavity systems is provided, together with the experimental evidence of a weak coupling effect between the single-photon emitter and the PhC cavity
Light Nuclides Produced in the Proton-Induced Spallation of 238U at 1 GeV
The production of light and intermediate-mass nuclides formed in the reaction
1H+238U at 1 GeV was measured at the Fragment Separator (FRS) at GSI,
Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A
GeV 238U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in
the range from Z=7 to Z=37 were unambiguously identified, and the velocity
distributions of the produced nuclides were determined with high precision. The
results show that the nuclides are produced in a very asymmetric binary decay
of heavy nuclei originating from the spallation of uranium. All the features of
the produced nuclides merge with the characteristics of the fission products as
their mass increases.Comment: 40 pages, 16 figures, 3 table
- …