1,593 research outputs found

    Mapping kinematic functional abilities of the hand to three dimensional shapes for inclusive design

    Get PDF
    Loss of hand function can have adverse effects on an individual\u27s ability to maintain independence. The ability to perform daily activities, such as food preparation and medication delivery, is dependent on the hand\u27s ability to grasp and manipulate objects. Therefore, the goal of this research was to demonstrate that three dimensional (3D) modeling of hand function can be used to improve the accessibility of handheld objects for individuals with reduced functionality through informed design. Individual models of hand functionality were created for 43 participants and group models were developed for groups of individuals without (Healthy) and with reduced functionality due to arthritis (RFA) of the hand. Cylindrical models representative of auto-injectors of varying diameters were analyzed in 3D space relative to hand function. The individual model mappings showed the cylinder diameter with the highest mapped functional values varied depending on the type of functional weighting chosen: kinematic redundancy of fingertip pad positional placement, fingertip pad orientation, or finger force directionality. The group mappings showed that for a cylinder to be grasped in a power grasp by at least 75% of the Healthy or RFA groups, a diameter of 40 mm was required. This research utilizes a new hand model to objectively compare design parameters across three different kinematic factors of hand function and across groups with different functional abilities. The ability to conduct these comparisons enables the creation of designs that are universal to all – including accommodation of individuals with limits in their functional abilities

    The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature

    Get PDF
    There is growing demand for functional food products enriched with long chain omega-3 fatty acids (LCω3PUFA). Nanoemulsions, systems with extremely small droplet sizes have been shown to increase LCω3PUFA bioavailability. However, nanoemulsion creation and processing methods may impact on the oxidative stability of these systems. The present systematic review collates information from studies that evaluated the oxidative stability of LCω3PUFA nanoemulsions suitable for use in functional foods. The systematic search identified seventeen articles published during the last 10 years. Researchers used a range surfactants and antioxidants to create systems which were evaluated from 7 to 100 days of storage. Nanoemulsions were created using synthetic and natural emulsifiers, with natural sources offering equivalent or increased oxidative stability compared to synthetic sources, which is useful as consumers are demanding natural, cleaner label food products. Equivalent vegetarian sources of LCω3PUFA found in fish oils such as algal oils are promising as they provide direct sources without the need for conversion in the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that can produce nanoemulsion systems with equivalent/increased oxidative stability in comparison to other emulsifiers. Further studies to evaluate the oxidative stability of quillaja saponin nanoemulsions combined with algal sources of LCω3PUFA are warranted

    The new wave of pilot-wave theory

    Get PDF
    Small drops bouncing across a vibrating liquid bath display many features reminiscent of quantum systems

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments

    Cardiac effects of amiselimod compared with fingolimod and placebo: results of a randomised, parallel-group, phase I study in healthy subjects.

    Get PDF
    AIM: Amiselimod (MT-1303) is a selective sphingosine 1-phosphate 1 (S1P1 ) receptor modulator which is currently being developed for the treatment of various autoimmune diseases. Unlike some other S1P receptor modulators, amiselimod seemed to show a favourable cardiac safety profile in preclinical, phase I and II studies. The aim of the current study was to characterize the cardiac effects of amiselimod by directly comparing it with fingolimod and placebo. METHODS: A total of 81 healthy subjects aged 18-55 years were equally randomized to receive amiselimod 0.4 mg, amiselimod 0.8 mg, placebo or fingolimod 0.5 mg once daily for 28 days. The chronotropic/dromotropic and inotropic effects were evaluated using intensive Holter electrocardiogram and echocardiography. RESULTS: Unlike fingolimod, neither amiselimod dose exerted acute (1-6 h) negative chronotropic effects on Days 1 and 2. The lowest nadir mean hourly heart rate was observed on Day 14 in the amiselimod 0.4 mg group (least squares mean difference: -4.40 bpm, 95% confidence interval -7.15, -1.66) and Day 7 in the 0.8 mg group [-3.85 bpm (-6.58, -1.11)] compared with placebo, but these changes were smaller than those with fingolimod on Day 1 [-6.49 bpm (-8.95, -4.02)]. No clinically significant bradyarrhythmia or cardiac functional abnormalities were observed in either amiselimod group. Both amiselimod doses were well tolerated and no serious adverse events were reported. Fingolimod was also generally well tolerated, although one subject was withdrawn owing to highly frequent 2:1 atrioventricular blocks on Day 1. CONCLUSION: The study demonstrated a more favourable cardiac safety profile for amiselimod than fingolimod when administered over 28 days in healthy subjects

    The UKC3 regional coupled environmental prediction system

    Get PDF
    This paper describes an updated configuration of the regional coupled research system, termed UKC3, developed and evaluated under the UK Environmental Prediction collaboration. This represents a further step towards a vision of simulating the numerous interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land using more integrated regional coupled prediction systems at kilometre-scale resolution. The UKC3 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean surface waves (WAVEWATCH III®), coupled together using OASIS3-MCT libraries. The major update introduced since the UKC2 configuration is an explicit representation of wave–ocean feedbacks through introduction of wave-to-ocean coupling. Ocean model results demonstrate that wave coupling, in particular representing the wave-modified surface drag, has a small but positive improvement on the agreement between simulated sea surface temperatures and in situ observations, relative to simulations without wave feedbacks. Other incremental developments to the coupled modelling capability introduced since the UKC2 configuration are also detailed. Coupled regional prediction systems are of interest for applications across a range of timescales, from hours to decades ahead. The first results from four simulation experiments, each of the order of 1 month in duration, are analysed and discussed in the context of characterizing the potential benefits of coupled prediction on forecast skill. Results across atmosphere, ocean and wave components are shown to be stable over time periods of weeks. The coupled approach shows notable improvements in surface temperature, wave state (in near-coastal regions) and wind speed over the sea, whereas the prediction quality of other quantities shows no significant improvement or degradation relative to the equivalent uncoupled control simulations

    Pulmonary function testing in children's interstitial lung disease

    Get PDF
    The use of pulmonary function tests (PFTs) has been widely described in airway diseases like asthma and cystic fibrosis, but for children's interstitial lung disease (chILD), which encompasses a broad spectrum of pathologies, the usefulness of PFTs is still undetermined, despite widespread use in adult interstitial lung disease. A literature review was initiated by the COST/Enter chILD working group aiming to describe published studies, to identify gaps in knowledge and to propose future research goals in regard to spirometry, whole-body plethysmography, infant and pre-school PFTs, measurement of diffusing capacity, multiple breath washout and cardiopulmonary exercise tests in chILD. The search revealed a limited number of papers published in the past three decades, of which the majority were descriptive and did not report pulmonary function as the main outcome.PFTs may be useful in different stages of management of children with suspected or confirmed chILD, but the chILD spectrum is diverse and includes a heterogeneous patient group in all ages. Research studies in well-defined patient cohorts are needed to establish which PFT and outcomes are most relevant for diagnosis, evaluation of disease severity and course, and monitoring individual conditions both for improvement in clinical care and as end-points in future randomised controlled trials

    The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Get PDF
    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans
    • …
    corecore