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Abstract 12 

There is growing demand for functional food products enriched with long chain omega-13 

3 fatty acids (LCωγPUFA). Nanoemulsions, systems with extremely small droplet 14 

sizes have been shown to increase LCωγPUFA bioavailability. However, 15 

nanoemulsion creation and processing methods may impact on the oxidative stability 16 

of these systems. The present systematic review collates information from studies that 17 

evaluated the oxidative stability of LCωγPUFA nanoemulsions suitable for use in 18 

functional foods. The systematic search identified seventeen articles published during 19 

the last 10 years. Researchers used a range surfactants and antioxidants to create 20 

systems which were evaluated from 7 to 100 days of storage.  21 
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Nanoemulsions were created using synthetic and natural emulsifiers, with natural 22 

sources offering equivalent or increased oxidative stability compared to synthetic 23 

sources, which is useful as consumers are demanding natural, cleaner label food 24 

products. Equivalent vegetarian sources of LCωγPUFA found in fish oils such as algal 25 

oils are promising as they provide direct sources without the need for conversion in 26 

the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that 27 

can produce nanoemulsion systems with equivalent/increased oxidative stability in 28 

comparison to other emulsifiers. Further studies to evaluate the oxidative stability of 29 

quillaja saponin nanoemulsions combined with algal sources of LCωγPUFA are 30 

warranted. 31 

Keywords: nanoemulsion, omega-3, functional foods, oil-in-water, oxidation, 32 

oxidative stability  33 

Conflicts of interest: None.  34 
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Introduction 37 

There is increasing evidence in studies conducted over recent decades that numerous 38 

health benefits are associated with the consumption of long chain omega-3 (ω-3) 39 

polyunsaturated fatty acids (LCωγPUFA) throughout the human lifecycle (Bowen et 40 

al. 2016, Calder 2014, Simopoulos 2011). An adequate LCω3PUFA status is a key 41 

factor in the maintenance of health and may reduce the risk of chronic and 42 

inflammatory diseases (Deckelbaum and Torrejon 2012, Yates et al. 2014). Despite 43 

known health benefits, consumption of omega-3 fatty acids of which oily fish is the 44 

most abundant source (Lenihan-Geels and Bishop 2016) remains lower than 45 
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recommended levels (table 1), with omega-3 intakes in Western regions being 5-fold 46 

lower than Japanese intakes (Bates et al. 2016, Meyer 2011, Meyer 2016, 47 

Papanikolaou et al. 2014). Supplementation may provide an alternative, however 48 

supplement use is not widespread and a collaborative strategy of food fortification, in 49 

addition to food sources (i.e., fish consumption) may need to be considered to achieve 50 

recommended intakes in Western populations (Bates, et al. 2016, Papanikolaou, et al. 51 

2014). To address this problem there has recently been an emphasis on the 52 

incorporation of LCωγPUFA source oils into food products, which has led to increased 53 

interest from consumers and the food industry (Decker et al. 2012, Jacobsen, Nielsen, 54 

et al. 2013, Salvia-Trujillo et al. 2016).  55 

Omega 3 source oils 56 

Fish oils are currently the most prevalent source of the most beneficial LCω3PUFA 57 

which are eicosapentaenoic acid (20:5 ω-3; EPA) and docosahexaenoic acid (22:6 ω-58 

3; DHA) (Lenihan-Geels and Bishop 2016). Fish oils contain a high concentration of 59 

LCωγPUFA’s and have a vast number of different fatty acids contained in their 60 

triglycerides. The flesh of oily fish such as mackerel, salmon, sardines, anchovies and 61 

pilchards is rich in EPA and DHA (Bailey 2009). The use of fish oils as a LCω3PUFA 62 

source for supplementation and fortification is common place, however fish oil 63 

supplementation may be disliked due to commonly reported adverse effects including 64 

gastrointestinal upset, fishy aftertaste and gastric repetition (Fetterman and 65 

Zdanowicz 2009). Krill oil provides a rich source of EPA and DHA, however as with 66 

other marine based sources krill population numbers can fluctuate, therefore 67 

sustainability cannot be guaranteed (Lane and Derbyshire 2015, Surette 2013, 68 

Trivelpiece et al. 2011). Fish and krill based sources of LCω3PUFA are by their nature 69 
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unsuitable for vegetarians and non-fish eaters who abstain from eating marine and 70 

fish sources for ethical reasons.   71 

Further vegetarian sources are available in the form of flaxseed, echium seed, perilla 72 

seed, blackcurrant seed and algal oils. (Asif 2011, Linnamaa et al. 2010, Mir 2008). 73 

Flaxseed oil is currently the most significant vegetarian source of alpha- linolenic acid 74 

(18:3 ω-3; ALA). Also known as linseed oil it can contain up to 57 per cent ALA when 75 

cold pressed (Sharif et al. 2017). A considerable amount of research has examined 76 

supplementation and food enrichment with ALA rich oils, however conversion of ALA 77 

to its longer chain, more effective relatives EPA and DHA is limited in humans and 78 

alternative direct sources of EPA and DHA are available (Lane, Derbyshire, et al. 79 

2014).  80 

Micro-algae oils are a fairly recent advance within the food and nutraceutical industry. 81 

They are produced in tightly controlled, closed fermentation facilities or in the case of 82 

phototropic algae produced in photobioreactors or open raceways and are entirely free 83 

of animal products (Breivik 2007, Lenihan-Geels and Bishop 2016, Ryckebosch et al. 84 

2012). Capable of providing large amounts of EPA and DHA algae are also the primary 85 

source of DHA in the food chain (Arterburn et al. 2006). Algae oils represent a 86 

sustainable LCω3PUFA source suitable for vegetarians, vegans and non-fish eaters 87 

(Lane, et al. 2014).  88 

Food fortification 89 

Functional foods provide an added health benefit over and above the food products 90 

nutritional value (Bigliardi and Galati 2013, Khan et al. 2013). In recent years the food 91 

industry has evolved, and there is an increased focus on innovative approaches in 92 

processing and the introduction of novel foods that may help to optimise health and 93 
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wellbeing (Khan, et al. 2013). The use of LCωγPUFA source oils in functional foods 94 

may offer considerable health benefits, however it also gives rise to a number of 95 

challenges due to their low water solubility and poor chemical stability. The chemical 96 

structure of LCω3PUFA also makes them particularly susceptible to oxidation 97 

(Jacobsen 2010, Wang and Shahidi 2017). Oxidation occurs as the result of reactions 98 

with PUFA, free radicals and oxygen (Walker et al. 2015b). Lipid oxidation is a complex 99 

process which is influenced by many factors (Shahidi and Zhong 2010). Fatty acids 100 

with a high degree of unsaturation can be less stable to oxidation when incorporated 101 

into functional foods, which causes three main problems. Firstly, it gives rise to 102 

objectionable ‘off’ flavours. It also reduces the nutritional value of foods containing 103 

lipids (Wang and Shahidi 2017). Free radicals, which are formed during oxidation may 104 

cause the formation of atherosclerosis following ingestion posing a potential health 105 

risk to consumers (Jacobsen 2010).   106 

Emulsions and nanoemulsions 107 

In the case of LCωγPUFA, oil in water emulsion systems are commonly used in the 108 

food industry as delivery vehicles, particularly in foods with an aqueous base. An 109 

emulsion is a dispersion of two or more immiscible liquids consisting of a continuous 110 

phase and a disperse phase (Coultate 2009). There is some debate within the 111 

literature in relation to definitive nanoemulsion droplet size ranges. Solans and Solé 112 

(2012) state that nanoemulsions are emulsion systems with extremely small droplet 113 

sizes in the range of 20 to 500nm whereas McClements and Rao (2011) define 114 

nanoemulsions also referred to as a mini emulsions as a conventional emulsion that 115 

contains very small particles, with mean radii between about 10 to 100 nm. The 116 

incorporation of LCωγPUFA oils into functional foods using nanoemulsions has the 117 

potential to improve LCωγPUFA bioavailability (Lane, Li, et al. 2014). However this 118 
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may also create further concerns in relation to oxidative stability due to small lipid 119 

droplet sizes and large droplet surface areas (Walker, et al. 2015b). Nanoemulsions 120 

can be created using high mechanical energy, high surfactant levels or combinations 121 

of both. Creation methods can normally be classed as high-energy and low-energy 122 

methods (Walker, et al. 2015b).  123 

Low energy methods can be described as condensation, low energy or phase 124 

inversion methods. These processes make use of the phase transitions that take place 125 

during homogenisation processes as a result of instantaneous curvature of the 126 

surfactant (Solè et al. 2006). This change can be achieved using a number of 127 

processes. Phase inversion temperature (PIT) involves changing the temperature 128 

whilst maintaining the composition. Phase inversion composition (PIC), occurs when 129 

the temperature is maintained and the environmental composition is amended. Phase 130 

inversion can be triggered when amendments are made to the composition or 131 

environment of an emulsion, examples of this include changes to the disperse phase 132 

volume fraction, type of emulsifier, emulsifier concentration, solvent conditions, 133 

temperature, or by mechanical agitation (Shahidi 2005). Nanoemulsions with droplet 134 

sizes as small as 17nm have been achieved by Sole et al, (2006) using the PIC method 135 

and 35nm using the PIT method by Ee, Duan, Liew & Nguyen (2008). However, 136 

commercial applications for phase inversion are limited as only certain kinds of 137 

emulsion are able to undergo inversion without being broken down into their 138 

component phases (Shahidi 2005). These methods also require a large amount of 139 

surfactants and are not applicable to large scale industrial productions (Jafari et al. 140 

2006). Spontaneous emulsification involves the addition of one phase to another by 141 

continuous stirring, and has also been used to create nanoemulsions with droplet sizes 142 

<200nm (Walker et al. 2015a).  143 
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The high-energy approach is commonly used in the food sector. Devices with very 144 

high energy input are utilised to give greater control of composition and size 145 

distributions of the nanoemulsions produced (Karthik and Anandharamakrishnan 146 

2016a). These methods use devices that are capable of generating intensely 147 

disruptive forces that break up the oil and water phases leading to the formulation of 148 

very small oil droplets (Acosta 2009) and include high speed homogenisation, 149 

microfluidization and ultrasound. High speed homogenisation can be used to produce 150 

very small droplets in an emulsion system by applying additional sheer force to break 151 

down oil droplets using high speed, defined as rpm between 10000 and 24000 152 

(Esquerdo et al. 2015, Karthik and Anandharamakrishnan 2016b). High pressure 153 

homogenisation combines intense sheer, cavitation and turbulent flow to create 154 

extremely small oil droplets (McClements 2015). A further high-power method, 155 

microfluidization offers a flexible control over emulsion droplet sizes and can be used 156 

to produce fine emulsions from a large variety of materials (Jafari, et al. 2006). 157 

However, both methods can be disadvantaged by complex cleaning requirements, 158 

high running costs and equipment wear rates making them prone to significant losses 159 

in efficiency (Leong et al. 2009). Microfluidizers are applicable to large-scale 160 

productions, although droplet sizes may be larger than some of the low energy 161 

methods discussed earlier. Ultrasound refers to sound waves that are above and 162 

beyond the frequency of human hearing (>18 kHz) (Ashokkumar et al. 2010, 163 

Sanguansri and Augustin 2006). Ultrasound emulsification may be used instead of 164 

high-pressure homogenisation and microfluidization to achieve similar results with 165 

reductions in operating costs (Abbas et al. 2013).  166 

 167 

 168 
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Lipid oxidation  169 

The reaction mechanism and factors that influence oxidation reactions are different for 170 

emulsified fats and oils (lipids) than for bulk lipids (Hu and Jacobsen 2016). The 171 

interfacial membrane of an emulsion system is of importance in lipid oxidation as it 172 

represents the region where lipid and water soluble components are close enough to 173 

interact, potentially giving higher concentrations of lipid peroxides and other volatiles 174 

(Berton et al. 2011). Lipid oxidation in emulsions usually occurs at the oil in water 175 

interface when free radicals interact with PUFA’s within the lipid droplets or when water 176 

soluble trace metal ions react with hydroperoxides located at the droplet interface 177 

(Jacobsen, Horn, et al. 2013, Walker, et al. 2015b). Most LC3PUFA oils contain trace 178 

levels of peroxides and foods suitable for enrichment can contain trace levels of 179 

transition metals so metal-catalysed breakdown of peroxides is considered to be one 180 

of the main quality issues for LC3PUFA enriched functional food products (Jacobsen, 181 

Horn, et al. 2013, Jacobsen, Sørensen, et al. 2013). The creation of nanosized lipid 182 

droplets in an aqueous continuous phase greatly increases the surface area of the 183 

lipid phase and therefore the susceptibility to oxidation. In addition, when system 184 

droplet ranges are smaller than the wavelength of light, the light waves are weakly 185 

scattered giving the system transparent or turbid appearance. The increased 186 

transmission of light waves through nanoemulsion systems may increase their 187 

susceptibility to light induced oxidation (Uluata et al. 2015). The susceptibility of oil 188 

droplets to lipid oxidation depends on whether the oxidation catalyst is electrostatically 189 

attracted to the interfacial membrane (McClements and Decker 2000, McClements 190 

and Rao 2011). If the oxidation catalysts are repulsed from the lipid water interface, 191 

lipid oxidation in emulsions can be lowered (Yi et al. 2014). The choice of 192 

homogenization equipment, emulsifier type and droplet size can also influence the 193 
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oxidative stability of the resultant systems. The use of high-power ultrasound methods 194 

in the creation of nanoemulsion systems has been associated with increased oxidation 195 

reactions in lipids. (Pingret et al. 2012, Pingret et al. 2013). The use of microfluidization 196 

has been shown to result in decreased oxidation levels in comparison to high pressure 197 

valve homogenization when whey protein is used as an emulsifier (Horn et al. 2012)   198 

The main focus of this article is to compare and contrast the findings of studies 199 

published during the last 10 years that have evaluated the oxidative stability of 200 

LCω3PUFA nanoemulsions suitable for functional food enrichment. The aim of the 201 

review is to evaluate some of the most recent key up to date papers in order fill a gap 202 

in the literature in relation to this topic and to inform future decisions and research into 203 

this promising area. This information should aid in the identification of safe, optimal 204 

components including types of oils and emulsifiers, processing and storage conditions 205 

to maintain the oxidative stability of LCω3PUFA nanoemulsions for use in in functional 206 

foods. 207 

  208 
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Methods  209 

The aim of this review was to fill a gap in the literature by evaluating studies that 210 

focussed on the oxidative stability of LCω3PUFA nanoemulsions suitable for 211 

integration into food vehicles. A systematic literature search was conducted in 212 

accordance with the PRISMA checklist for systematic reviews and meta-analysis 213 

(Table 2) (Moher et al. 2009, Moher et al. 2015). Search engines PubMed, Science 214 

Direct, Google Scholar, and SCOPUS were used to identify English language, peer 215 

reviewed articles published over a 10-year period between January 2007 and January 216 

2017.  217 

Inclusion criteria 218 

Search terms including nanoemulsion(s), nanotechnology, emulsions and foods, 219 

nutrients omega 3, ω3, LCω3PUFA, DHA, EPA, ALA, fish/ vegetable oils (e.g. salmon, 220 

tuna, carp, algae), or nut and seed oils (e.g. echium, walnut) identified a total of 1880 221 

articles. These were then narrowed to 1420 articles with further inclusion of search 222 

terms: food vehicles, food delivery and functional foods.  223 

Further inclusion criteria were that studies:   224 

1) Investigated products associated with the initiation, propagation and/or 225 

termination stages of lipid oxidation including peroxide value (PV), anisidine 226 

value (AV), total oxidation value (TOTOX or TV), iodine value (IV), thiobarbituric 227 

acid reacting substances (TBAR’s), gas chromatography headspace analysis 228 

(GCHS), gas chromatography mass spectrometry headspace analysis 229 

(GCMS,HA), high performance liquid chromatography (HPLC), fatty acid 230 

analysis and sensory analysis.   231 
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2)  Encompassed nanoemulsion system creation methods such including high 232 

energy: ultrasound, ultrasonic, microfluidizer, high pressure valve and high 233 

speed homogenization and low energy: phase inversion; temperature and 234 

composition and spontaneous methods. 235 

3) Examined the effect of different emulsifiers, hydrophilic lipophilic (HLB) balance 236 

and processing conditions including pH and Zeta potential. Including amongst 237 

others, emulsifiers lecithin, Tween products (all numbers), whey protein, 238 

caseinate, glycerol dioleate, Span products (all numbers), sucrose 239 

monolaurate, sodium steroyl, with HLB ranges from 1 to 20. 240 

4) Examined the ability of antioxidants to retard or inhibit lipid oxidation in 241 

LC3PUFA oil in water nanoemulsions   242 

 243 

Exclusion criteria 244 

Papers that were not written in English language or where the full article could not be 245 

accessed were excluded. Studies that referred to non-food based nanoemulsions 246 

(fuels and drug/pharmaceutical related); systems with droplet sizes outside the range 247 

of 50-500nm, cosmetic applications and water in oil systems were removed. Papers 248 

written prior to January 2007 were excluded alongside studies that did not evaluate 249 

the oxidative stability of LC3PUFA oil in water nanoemulsion systems. Papers that did 250 

not make specific reference to nanoemulsion systems/nanoliposome carriers were 251 

also excluded from the review.  252 

 253 

 254 

 255 
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Results and Discussion 256 

The literature search identified 17 key studies that have investigated the oxidative 257 

stability of LCωγPUFA nanoemulsion systems suitable for use as food enrichment 258 

vehicles. The 17 studies are summarised in Table 3.  259 

Fish oil 260 

As discussed previously, the chemical structure of LCω3PUFA makes them 261 

particularly susceptible to oxidation. Source oils with greater fatty acid chain length 262 

and higher numbers of double bonds generally demonstrate decreased oxidative 263 

stability. Relative susceptibility for DHA (22:6) is increased by 30 times in comparison 264 

to ALA (18:3) (Decker, et al. 2012). The majority of the studies examined in the review 265 

used fish oil as an enrichment vehicle, which may be due to its current ease of 266 

availability and high EPA and DHA content (Lenihan-Geels and Bishop 2016).  267 

Rasti, Erfanian & Selamat (2017) evaluated the application, stability and suitability of 268 

fish oil in water nanoliposomes in bread and milk products. Nanoliposomes had 269 

significantly lower primary and secondary oxidation levels in comparison to 270 

microencapsulated and bulk fish oil (P < 0.05) and were found to be suitable as 271 

fortification vehicles in bread and milk. A further fish oil nanoliposome study was 272 

conducted by Ghorbanzade, et al (2017) with nanoliposomes incorporated into 273 

yoghurt. Peroxide value testing and sensory analysis established that liposomal 274 

structures were successful for the encapsulation of DHA and EPA, which remained 275 

stable during the 21-day storage period, nanoencapsulation was found to protect 276 

LCωγPUFA from deterioration by oxidation. Esquerdo et al (2015) created chitosan 277 

nanocapsules using a 15 per cent carp oil nanoemulsion. Peroxide values for the 278 

nanocapsules remained stable during storage while bulk oil peroxide values increased 279 
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over a 45-day storage period. Salvia-Trujillo et al, (2016), Walker et al (2015a) and 280 

Belhaj et al (2010) investigated the oxidative stability of 10 per cent oil in water 281 

nanoemulsions using fish oil as the LCωγPUFA source. The authors investigated the 282 

addition of antioxidants and effects of different emulsifiers on the oxidative stability of 283 

the systems. The addition/presence of natural antioxidants such as lemon oil, marine 284 

lecithin, astaxanthin and sodium alginate was found to increase the oxidative stability 285 

of the resultant systems. Uluata et al (2015) investigated the oxidative stability of 1 per 286 

cent fish oil in water nanoemulsions, creating systems with droplet ranges under 287 

100nm. A range of primary and secondary oxidation tests were used to evaluate 288 

synthetic and natural emulsifiers. Synthetic emulsifier Tween 80 was found to have 289 

significantly higher radical scavenging capacity (P < 0.05) and quillaja saponin was 290 

found to be an effective natural emulsifier due to its physical and oxidative stability.  291 

 292 

Overall, the use of nanoemulsion technology appears to have increased or stabilised 293 

oxidation reactions in studies using fish oil. However, the use of fish oil in food 294 

fortification raises concerns in relation to their suitability, sustainability and issues with 295 

contamination. The overall condition of global fisheries is in decline and scientific 296 

concerns in relation to over fishing have frequently featured in the literature (Béné et 297 

al. 2015). Seafood is particularly susceptible to contamination with organic lipophilic 298 

pollutants and fish is a major source of exposure to heavy metals and organic 299 

pollutants which may cause health concerns for consumers (Hong et al. 2015, Verbeke 300 

et al. 2005).  301 

 302 

Krill oil  303 



14 
 

Krill are small shrimp-like crustaceans that have particularly high content of EPA and 304 

DHA attributed to their diet, which is based on microalgae. Krill oil has recently 305 

emerged as a LCω3PUFA source oil and is similar to fish oil in terms of its EPA/DHA 306 

content although 30-65 per cent of the fatty acids are in phospholipid form which may 307 

increase bioavailability (Adarme-Vega et al. 2014, Lenihan-Geels and Bishop 2016). 308 

Two studies in the review used high-power methods to create nanoemulsions with 309 

droplet ranges <333nm. Wu et al, (2016) examined the physical and oxidative stability 310 

of 1 per cent krill oil in water nanoemulsions and the influences of antioxidant polarity 311 

with the addition of α-tocopherol and trolox antioxidants. The more polar trolox was 312 

found to be a more effective antioxidant for these systems than α-tocopherol.  313 

A further study by Zhu et al (2015) evaluated the chemical and physical stability of 314 

lecithin stabilised nanostructured lipocarriers as a delivery system to encapsulate krill 315 

oil. Nanostructured lipocarriers were found to offer significant protection against 316 

photooxidation upon exposure to UV light (P < 0.05) in comparison to bulk krill oil.  317 

Krill oil contains astaxanthin, which acts as a natural antioxidant enhancing the 318 

potential associated health benefits and offering increased stability against oxidation 319 

when processed for supplementation and addition to foods (Adarme-Vega, et al. 320 

2014). Overall, the articles in this review found that the presence or addition of 321 

antioxidants and encapsulation of krill oil increased oxidative stability and the process 322 

of incorporation in to nanoemulsion systems did not have an adverse effect during 323 

storage periods varying from 8 to 70 days. However as with fish oil, krill oil by its nature 324 

may be unsuitable for consumption by vegetarians and vegans, furthermore concerns 325 

have been raised in relation to sustainability due to global warming and exploitation 326 

by over fishing in arctic areas (Trivelpiece, et al. 2011). 327 



15 
 

 A further issue with krill oil is its unpleasant off-odour and flavour, which cannot usually 328 

be removed by refining and deodorisation during processing. This makes it 329 

unacceptable in terms of quality to consumers when used for food enrichment 330 

purposes unless it is encapsulated and incorporated into novel nanocarriers to create 331 

a sensory barrier (Henna Lu et al. 2011, Lu et al. 2013, Zhu, et al. 2015).  332 

Algal oil 333 

Algal oil is derived from algae, which forms the foundation of the seafood chain. Most 334 

commercially produced algal oils are rich in DHA which is thought to be one of the 335 

most beneficial LCω3PUFA sources (Baker et al. 2016). However, DHA is particularly 336 

susceptible to oxidation due to its long carbon chain length and high number of double 337 

bonds. Three of the articles in the review examined the oxidative stability of algal oil 338 

nanoemulsions created using high-power methods. Karthik & Anandharamakrishnan 339 

(2016a) investigated the physiochemical stability and in-vitro digestibility of DHA 340 

nanoemulsions stabilised with Tween 40 (synthetic emulsifier), sodium caseinate and 341 

soy lecithin (natural emulsifiers) created using microfluidization. Significant differences 342 

were found in peroxide values of 10 per cent oil in water nanoemulsions stored over 343 

20 days with soy lecithin stabilised systems significantly greater than Tween 40 344 

systems (P < 0.05). There were no changes or differences in fatty acid profiles of the 345 

different systems which suggests that soy lecithin may be susceptible to oxidation 346 

reactions when processed using microfluidization. Tween 40 systems were found to 347 

be most stable in terms of primary oxidation and in-vitro digestibility. Additional work 348 

has also been completed to further evaluate algal oil nanoemulsions stabilised with 349 

Tween 40 created using high speed/pressure homogenisation. There were no 350 

significant differences in oxidative stability between systems created using high power 351 

or pressure homogenization. A combination of high speed/pressure homogenization 352 
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was found to create better physical stability in 10 per cent systems stabilised with 353 

Tween 40 (Karthik and Anandharamakrishnan 2016b). Research to evaluate spray 354 

dried powders created from a 10 per cent algal oil nanoemulsion template was 355 

conducted by Chen et al, (2016). Spray dried algal oil powders were found to have 356 

excellent reconstructed behaviour during the 30 day trial. Enhanced oxidative stability 357 

was found in systems formed with ȕ-sitosterol & Ȗ-oryzanol phytosterols (P < 0.05). 358 

Spray dried powders also had lower levels of fishy off flavours which are associated 359 

with oxidised oils. Algal oils offer a potentially viable source of LCωγPUFA, which is 360 

sustainable and suitable for vegetarians and vegans. A review of 16 published clinical 361 

trials found that consumption of algal oil may be beneficial in cardiovascular risk 362 

factors and unlike fish oil, algal-DHA seldom caused gastrointestinal complaints such 363 

as fishy taste and eructation (Ryan et al. 2009). The studies identified in the review 364 

evaluated the oxidative stability of DHA oils, however more recently EPA/DHA algal 365 

oils have become available and these have been found offer similar benefits to fish oil 366 

for adults with hypertriglyceridemia (Maki et al. 2014). Research has yet to investigate 367 

the suitability of EPA/DHA oils in functional foods. Further work is therefore warranted 368 

to investigate integration of these oils into nanoemulsion systems with an additional 369 

focus on oxidative stability, which may be improved in comparison to algal DHA alone 370 

due to the shorter carbon chain and lower numbers of double bonds in EPA.   371 

Flaxseed oil  372 

Flaxseed oil is currently the most widely used source of vegetarian LCω3PUFA in 373 

supplementation and food enrichment (Lane, et al. 2014, Lenihan-Geels and Bishop 374 

2016). Flaxseed oil contains up to 57 per cent ALA, which may have increased 375 

oxidative stability over its longer carbon chain counterparts EPA and DHA (Decker, et 376 

al. 2012, Sharif, et al. 2017). Two studies identified in the review evaluated the 377 
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oxidative stability of 10 per cent flaxseed oil in water nanoemulsions created using 378 

microfluidization. Primary products were identified using peroxide value testing in both 379 

studies and the use of antioxidants eugenol and caseinate was found to significantly 380 

reduce the formation of peroxides (P < 0.05) (Chen et al. 2017, Sharif, et al. 2017). 381 

Analysis of secondary oxidation products was conducted using headspace analysis 382 

and thiobarbituric acid reactive substances tests, the use of eugenol and caseinate 383 

was also found to be significantly effective when compared to systems generated with 384 

no addition of antioxidants. Flaxseed nanoemulsions were found to have significantly 385 

increased total oxidation levels in comparison to bulk oil in both studies (P < 0.05), 386 

which suggests that nanoemulsion processing does have an effect on the oxidative 387 

stability of flaxseed oil.  388 

Walnut oil   389 

Walnut oil contains relatively low amounts of LCω3PUFA at around 10 per cent ALA 390 

(Zhao et al. 2004), longer chain EPA and DHA are not present which may give 391 

improved oxidative stability. Short term consumption of walnut oil has been found to 392 

significantly decrease total and LDL cholesterol (P < 0.05), walnuts may also have 393 

potential benefits on oxidative stress and inflammatory markers (Banel and Hu 2009). 394 

Limited research has been conducted to examine the physiochemical properties of 395 

walnut oil nanoemulsions with one study identified in the review. Emulsifying 396 

conditions were investigated including processing time and concentration ratio using 397 

8, 6 and 4 per cent walnut oil-in-water nanoemulsion systems created using 398 

ultrasound. Loss of antioxidant activity testing over 35 days identified a quadratic effect 399 

of ultrasound treatment leading to significant losses of antioxidant activity (P < 0.05) 400 

(Homayoonfal et al. 2014). 401 
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 402 

Antioxidants  403 

A number of studies in the review examined the use of added antioxidants to improve 404 

the oxidative stability of LC3PUFA nanoemulsion systems. Wu et al, (2016) 405 

determined how antioxidant polarity impacted the oxidative stability of 1% krill oil in 406 

water nanoemulsion systems to reflect conditions in typical enrichment food vehicles.  407 

Lipid oxidation was significantly accelerated by the addition of ferrous chloride and 408 

trolox was found to be a better antioxidant than a-tocopherol. The antioxidant eugenol 409 

was used in combination with Purity gum ultra surfactant by Sharif et al, (2017) who 410 

noted significant improvements to physical and oxidative stability in these 10% 411 

flaxseed oil in water nanoemulsion systems. Caseinate was used in combination with 412 

the emulsifier quillaja saponin to create 10% oil in water flaxseed oil nanoemulsions 413 

by Chen at el (2017). Peroxide and TBARS values increased at significantly slower 414 

rates for the systems containing caseinate. The antioxidant properties of ȕ-sitosterol 415 

& Ȗ-oryzanol were evaluated by Chen et al (2016)in the formation of 10 per cent algae 416 

oil and quillaja saponin nanoemulsions. A significant protective effect was observed in 417 

spray dried powders over 30 days of storage (P < 0.05). Overall results from the review 418 

indicate that antioxidant addition is an effective strategy to stabilize LC3PUFA 419 

nanoemulsions against oxidation during storage. 420 

The effect of emulsion stability and pH 421 

The zeta-potential of a conventional emulsion or nanoemulsion is the electrical 422 

potential at the “shear plane,” which is defined as the distance away from the droplet 423 

surface below which the counter-ions remain strongly attached to the droplet when it 424 

moves in an electrical field. Zeta potential is one of the fundamental parameters known 425 
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to affect the physical stability of emulsion systems (McClements and Rao 2011). Zeta-426 

potential and nanoemulsion oxidation stability was evaluated in 1% fish oil systems by 427 

Uluata et al (2015) over a 5 day storage period. The effect of pH was also determined 428 

over the range of 2 to 8. At pH 7 all lipid droplets were negatively charged. No 429 

significant change in particle size was noted in pH range 2 to 8. Of the four natural and 430 

synthetic emulsifiers used in the study quillaja saponin was found to create the most 431 

physically and chemically stable systems. The physical and oxidative stability of fish 432 

oil nanoemulsions was measured by Walker et al (2015a). The aqueous phase was 433 

buffered at pH 3.0 to simulate the aqueous phase of a beverage system. Neither 434 

particle size nor surfactant concentration had an impact on the oxidative stability of the 435 

systems over 14 days of storage. Further work to evaluate the effect of physical 436 

stability and pH ranges on the oxidative stability of nanoemulsions created with 437 

different LC3PUFA oils, emulsifiers and antioxidants is warranted to simulate 438 

conditions in food and beverage systems (Haahr and Jacobsen 2008).  439 

Nanoemulsion production methods 440 

The majority of studies identified used high power processing methods to create 441 

nanoemulsion systems. High power processing has become more commonplace in 442 

the creation of nanoemulsion systems in recent years, however interest in low-energy 443 

methods for some applications is increasing due to their simple production methods, 444 

lower costs and ability to create systems with smaller droplet size ranges than high-445 

energy methods (Walker, et al. 2015b). Both methods have benefits and 446 

disadvantages. High-energy methods can be used to effectively create systems with 447 

narrow droplet ranges, however the necessary equipment can be expensive. Low 448 

energy methods are reasonably cheap in comparison, however high levels of 449 

surfactants are required to generate stable systems (Walker, et al. 2015b). One study 450 
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in the review examined differences in the oxidative stability of fish oil in water 451 

nanoemulsion systems created using lower-power spontaneous emulsification 452 

compared to high-power microfluidization. Emulsions created using microfluidization 453 

were found to have higher levels secondary oxidation products in comparison to 454 

systems created using spontaneous emulsification with added iron over a 14-day 455 

storage period. The authors concluded that fabrication methods may have an impact 456 

on secondary oxidation products of nanoemulsions and that low energy methods can 457 

be used to produce fish oil nanoemulsions without the use of expensive equipment 458 

using high levels of synthetic surfactants (Walker, et al. 2015a). In addition to this study 459 

previous research has identified that ultrasound processing may cause degradation in 460 

edible oils with the increase of free radicals and oxidative products in sonicated oils 461 

when compared to untreated oils. Microfluidization and ultrasound were the commonly 462 

used processing methods identified in the review, with only the Walker et al, (2015a) 463 

study examining the effect of processing treatment on oxidative stability of 464 

nanoemulsions, further research in this area is therefore warranted. 465 

Type of emulsifier 466 

Emulsifiers are surface active substances that play a vital role in emulsion formation 467 

and stability (Ozturk and McClements 2016). The type of emulsifier used to create 468 

nanoemulsion systems can have a large impact on their oxidative stability with droplet 469 

size ranges and attraction to prooxidants in the continuous phase being key factors. 470 

Furthermore the oil/water ratio, emulsifier concentration and location of the emulsifier 471 

within the aqueous phase interface are all important factors that can influence the 472 

oxidation stability of resultant nanoemulsion systems (Jacobsen, Horn, et al. 2013, 473 

Jacobsen, Sørensen, et al. 2013)  Studies identified in the review by Nejadmansouri 474 

et al, (2016) and Walker et al, (2015a) examined the influences of these factors and 475 
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found droplet ranges affected oxidation stability when a high molecular weight 476 

emulsifier was utilized but there was no effect for a low weight molecular weight 477 

surfactants although different levels of energy were used to create the systems. 478 

Nejadmansouri et al, (2016) found droplet size ranges had a significant effect on 479 

TBARS in 1% fish oil in water nanoemulsions (P < 0.05) created with ultrasound when 480 

compared to conventional emulsions, both systems incorporated whey protein isolate. 481 

Proteins usually adsorb at the interface with the lipophilic groups in the oil disperse 482 

and the hydrophilic groups present in the aqueous continuous phase. Systems are 483 

stabilized through electrostatic repulsion arising from charged groups on the protein 484 

surface area (Genot et al. 2013, Nejadmansouri, et al. 2016). Conversely the study by 485 

Walker et al (2015a) found neither particle size nor surfactant concentration had an 486 

impact on the rate of oxidation in 10% fish oil nanoemulsions created using 487 

spontaneous emulsification and low molecular weight synthetic surfactant Tween 80 488 

to stabilize the nanoemulsion systems.       489 

 490 

Consumer demand is dictating that the food industry should substitute synthetic 491 

surfactants with more natural alternatives and there is considerable interest in food 492 

products formulated with natural ingredients to provide cleaner labels (Ozturk and 493 

McClements 2016, Román et al. 2017, Walker, et al. 2015b). Lecithin was the most 494 

prevalent natural emulsifier identified in the review with five studies analyzing the 495 

oxidative stability of systems created with lecithin from various sources. Uluata et al 496 

(2015) compared systems created using sunflower lecithin to various natural and 497 

synthetic emulsifiers and found that sunflower lecithin was less stable to oxidation 498 

under light exposure which may impact its use in delivery systems in food and 499 

pharmaceutical industries. The emulsifier quillaja saponin is a natural food-grade 500 
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surfactant isolated from the bark of the quillaja saponaria molina tree (Yang et al. 501 

2013), it can be used produce systems with increased oxidative stability particularly 502 

when additional antioxidants are utilized. Three of the studies in the review used 503 

quillaja saponin and high power methods to create nanoemulsion systems using fish 504 

oil, flaxseed and algae oil. Uluata et al (2015) analyzed 1 per cent fish oil ester systems 505 

over a 5 day storage period and found quillaja saponin was an effective emulsifier due 506 

to its physical and oxidative stability. F. Chen et al (2017) found the addition of sodium 507 

caseinate gave a significant protective effect (P < 0.05) for quillaja saponin stabilised 508 

flaxseed nanoemulsions in microgels stored over 14 days. X.- W. Chen et al (2016) 509 

found the addition of ȕ-sitosterol & Ȗ-oryzanol in the formation of 10 per cent algae oil 510 

and quillaja saponin nanoemulsions offered a significant protective effect over 30 days 511 

of storage (P < 0.05). Further research to fully evaluate the use of quillaja saponin as 512 

a natural surfactant in LCω3PUFA nanoemulsion enriched foods appears to be 513 

warranted.  514 

Other natural emulsifiers were identified in the review including systems created using 515 

high power methods that were stabilised with whey protein isolate and modified 516 

starches. Whey protein isolate was found to offer a protective effect for oxidation in 1 517 

per cent fish oil nanoemulsion systems created with ultrasound by Nejadmansouri et 518 

al (2016). Systems created with flaxseed oil and modified starch in the form of Purity 519 

Gum Ultra by Sharif et al (2017) were found to be most stable to oxidation when 520 

created in combination with eugenol, a phenolic compound derived from clove oil. This 521 

was thought to be due to the formation of a compact thicker interfacial layer and the 522 

free radical scavenging properties of eugenol.   523 

Quillaja saponin and lecithin usually produce systems with a negative charge. 524 

Negatively charged emulsion systems have increased susceptibility to lipid oxidation 525 
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when metals are present in the aqueous phase, this can be addressed by the use of 526 

antioxidants as discussed earlier. Iron is thought to be the main prooxidant that 527 

decomposes lipid hydroperoxides to products associated with the latter stages of 528 

oxidation such as propanal (Walker, et al. 2015a). Iron was used as an accelerant in 529 

the study by Wu et al (2016) that determined how typical conditions and antioxidant 530 

use in food affects the stability of 1% krill oil nanoemulsions with a negative charge. 531 

Krill oil contains natural phospholipids that can spontaneously form nanoemulsion 532 

systems without the need for additional emulsifiers or surfactants. Iron was found to 533 

be a strong prooxidant in the study and the antioxidant trolox produced systems that 534 

were more stable to oxidation than α-tocopherol.  535 

Synthetic emulsifiers are still extensively used to create nanoemulsions. The review 536 

identified a that nonionic surfactants such as Span 80 and Tween 40 and 80 were 537 

widely used to create systems with lower droplet ranges and high physical stability 538 

than some of the available natural alternatives. Karthik et al (2016a) compared 10 per 539 

cent algal oil nanoemulsions created using natural soy lecithin and Tween 40. 540 

Refrigerated Tween 40 nanoemulsions exhibited lower lipid oxidation products and 541 

there was a significant difference in peroxide values between the Tween 40 and 542 

lecithin samples (P<0.05). Uluata et al (2015) compared the oxidative stability of 543 

nanoemulsions prepared with natural and synthetic surfactants over a 7 day storage 544 

period. Systems were created using 1 per cent fish oil with natural emulsifiers lecithin 545 

and quillaja saponin and synthetic emulsifiers Tween 80 and sodium dodecyl sulfate. 546 

Lecithin stabilised emulsions showed increased oxidation with light exposure and 547 

Tween 80 stabilised systems had significantly higher free radical scavenging capacity 548 

(P<0.05). Furthermore the nanoemulsions stabilised with quillaja saponin were found 549 

to offer a suitable alternative to synthetic emulsifiers due to their physical and oxidative 550 
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stability. The authors concluded that quillaja saponin could be an outstanding natural 551 

emulsifier for LCω3PUFA ethyl ester nanoemulsions.   552 

4.1 Recommendations 553 

Further studies should examine the potential of algal oils rich in EPA as well as DHA 554 

for food enrichment in the form of nanoemulsions with a full evaluation of the oxidative 555 

stability of the resultant systems in comparison to DHA algal oil products.  556 

The effect of high/low processing methods has not been fully determined, further 557 

research is necessary to compare the oxidative stability of LCωγPUFA systems 558 

created with low-energy methods such as spontaneous emulsification to commonly 559 

used high-power methods. 560 

Further work to evaluate the effect of physical stability and pH ranges on the oxidative 561 

stability of nanoemulsions created with different LC3PUFA oils, emulsifiers and 562 

antioxidants is warranted to simulate conditions in food and beverage systems. 563 

The review identified that quillaja saponin has the potential to provide an alternative to 564 

synthetic emulsifiers using high power methods with a variety of source oils. Further 565 

research is warranted to investigate the use of LCωPUFA nanoemulsions systems 566 

created with quillaja saponin over long term storage periods and when incorporated 567 

into food matrixes.    568 

Further research to determine primary and secondary oxidation products and the 569 

effects of natural and synthetic emulsifiers for LCωγPUFA nanoemulsions created 570 

using high and low processing methods is also warranted.  571 

The review identified that use of nanoliposomes to encapsulate lecithin and fish oil 572 

nanoemulsions provides a promising solution with significantly improvements to 573 
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primary and secondary oxidation stability. Further research should be conducted to 574 

evaluate oxidation stability of systems created with a variety of source oils 575 

incorporated into nanoliposomes.  576 

5.1 Conclusions 577 

There is considerable potential for LCω3PUFA functional foods that could act as 578 

alternative sources to oily fish. Ready formulated vegetarian sources of EPA and DHA 579 

such as algal oils are particularly promising as they provide direct sources of the more 580 

effective longer chain ωγ without the need for conversion in the metabolic pathway. 581 

Using nanotechnology to incorporate these source oils into foods offers increased 582 

bioavailability and, if processed under optimum conditions the oxidative stability of 583 

these systems may remain similar or be improved in comparison to unprocessed/bulk 584 

oils. Consumer demand dictates a clean label approach with considerable interest in 585 

the use of natural ingredients. The emulsifier quillaja saponin appears to be a 586 

particularly promising natural emulsifier that can produce systems with equivalent or 587 

increased oxidative stability in comparison to other natural and synthetic emulsifiers, 588 

particularly when additional antioxidants are used. Further studies to evaluate the 589 

oxidative stability quillaja saponin in combination with algal sources of EPA and DHA 590 

are warranted to enable the development of safe, clean label LCωγPUFA 591 

nanoemulsion enriched functional food products.         592 

  593 

  594 
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Table 1 – Recommendations for fish and LCωγPUFA intakes  864 

Source Quantity Country/Organisation  Reference 
Fish 
recommendations 

 1–2 Fish meals 
per week  

FAO / WHO 
 

(World Health Organisation 
2003) 

2 Fish meals per 
week preferably 
oily or at least 
one oily 

Netherlands,  
 
Australia, 
 
 
America,  
Europe 

(Health Council of the 
Netherlands 2015) 
(National Health and Medical 
Research Council 2013) 
(Lichtenstein et al. 2006) 
(Piepoli et al. 2016) 

LCω-3PUFA 
recommendations 

200–500 mg/d 
EPA and DHA  

FAO/WHO 
 

(World Health Organisation 
2003) 

450 mg/d EPA 
and DHA  

The Netherlands 
 

(Health Council of the 
Netherlands 2015) 

430–570 mg/d 
EPA and DHA  

America 
 

(Lichtenstein, et al. 2006) 

500 mg/d EPA 
and DHA  

America,  
Australia,  
 
ISSFAL 

(Lichtenstein, et al. 2006) 
(National Health and Medical 
Research Council 2013) 
(International Society for the 
Study of Fatty Acids and Lipids 
2004) 

120 mg/d DHA 
min, 430 mg/d 
EPA, DPA and 
DHA women  

Australia 
 
 

(National Health and Medical 
Research Council 2013) 

610 mg/d EPA, 
DPA and DHA 
men  

Australia (National Health and Medical 
Research Council 2013) 

 865 

 866 

 867 

 868 

 869 

 870 

 871 
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Table 2 – Summary of systematic review selection process 872 

 873 

 874 

  875 

Database search: PubMed, Science 
Direct, Google Scholar, SCOPUS 

Articles identified (n=1880) 

  

Excluded based on title, abstract and 
further inclusion criteria (n=1403) 

  

Suitable for inclusion (n=18) 

  

Included in the review (n=17) 

Duplicates removed (n=460) 

Full text screening and application of 
exclusion criteria 
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Table 3 – Results of the literature review 

Article/Author/
date 

Study 
objectives 

Emulsion type, 
% system 
droplet range 
and measure 

Oil type 
and 
functional 
fatty acid 

Emulsifier/ 
surfactant 
and % of 
system 

Antioxidant/
other 
ingredients 

Creation 
method 

Oxidation 
test 
methods 
and storage 
periods 

Main findings 

Novel 
nanoliposomal 
encapsulated 
omega-3 fatty 
acids and their 
applications in 
food (Rasti, et 
al. 2017)  

Evaluate the 
application, 
stability and 
suitability of ωγ 
PUFAs 
incorporated 
nanoliposomes 
in food 
enrichment. 
Nanoliposome
s compared to 
microencapsul
ated ωγ 
PUFAs and 
bulk fish oil in 
milk and bread 

Oil in water 
liposomes, fish 
oil and soy 
lecithin 0.4:2, 
mass ratio, 
with deionised 
water, 20-
200nm, 
Zetasizer 

Fish oil 
containin
g EPA 
and DHA 
(3:2, 
300mg/g) 
Microenc
apsulated 
fish oil, 
10% EPA 
and DHA.  

Soy 
lecithin, 1-
4% 
nanoliposo
mes added 
to milk and 
bread.   

 Ultrasound Peroxide 
values, 
anisidine 
values, 7 
days bread, 
3 days milk.  

Peroxide and anisidine values for ωγ 
enriched bread and milk samples 
increased significantly (P = 0.004) but 
not for the nanoliposomal enriched 
samples. Enriched bread would provide 
170.6-174.8mg EPA and 113.3-117.6mg 
DHA/100g. Enriched milk  167.4-
171.0mg EPA   EPA and 112.6-115.2mg 
DHA/100ml. Nanoliposomes can be 
used to fortify bread and milk. 

Influence of 
OSA-starch on 
the physio 
chemical 
characteristics 
of flax seed oil-
eugenol 
nanoemulsion
s. (Sharif, et al. 
2017) 

Examine the 
effect on 
oxidation of 
eugenol (EUG) 
and 2 modified 
starches as an 
emulsifiers for 
flaxseed oil 
nanoemulsions 

Oil in water 
nanoemulsion
s. 99.73 to 
558.2(nm). 
Mean droplet 
diameter 
(MDD) and 
polydispersity 
Index (PDI) 
using Zetasizer  

Flaxseed 
oil, 57.0% 
ALA  

Purity Gum 
Ultra (PG1), 
Purity Gum 
2000 (PG2) 
starches, 
10% 
flaxseed oil 

Eugenol 
(EUG) 

Microfluidizer Peroxide 
value 
Headspace 
analysis of 
hexanal 
and 
propanal,  
4 weeks  

Higher % retention of ALA and EUG in 
PG1. Eugenol served an antioxidant 
role, PG1 showed improved physical 
and oxidative stability and provided 
better outer coverings to the 
encapsulated materials (P < 0.05). 
These findings would help in the 
development and incorporation of 
oxidatively stable ALA rich 
nanoemulsions in dairy and beverages. 

Inhibition of 
lipid oxidation 
in 
nanoemulsion
s and filled 
microgels 
fortified with 

Examine 
sodium 
caseinate as a 
natural 
antioxidant in 
nanoemulsion 
filled 131 

Oil-in-water 
nanoemulsion 
Static light 
scattering 
(Mastersizer) 

Flaxseed 
oil 
71.4wt% 
of 
polyunsat
urated fat 
 

Quillaja 
saponin 
Emulsifier 
solution 
(1.12% 
(w/w) 10% 
(w/w) 

Caseinate  Microfluidizer 
 

Peroxide 
values 
TBARS 
Microstruct
ure 
analysis,  
14 days 

Peroxide and TBARS values of 
nanoemulsions without caseinate 
increased significantly more than the 
other systems during storage (P < 0.05) 
Peroxide and TBARS values with 
caseinate increased moderately 
throughout storage, but at a much 
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omega-3 fatty 
acids using 
casein as a 
natural 
antioxidant. 
(Chen, et al. 
2017) 

hydrogel beads 
(microgels) 
fortified with 
omega-3 fatty 
acids.  
 

Mean particle 
sizes - D32 or 
D43 
D32 after 
homogenizatio
n = <200nm 
D43 after 
homogenizatio
n = >200nm 
 

flaxseed oil 
in water.  , 5 
mM 
phosphate 
160 buffer, 
pH 7.0) 0.8 
alginate 
beads 
injected into 
calcium 
chloride 

slower rate than for the nanoemulsions 
without caseinate (P < 0.05). 
Encapsulating flaxseed oil droplets 
within an antioxidant protein-rich 
hydrogel bead is highly effective at 
protecting against oxidation. 

Nano-
encapsulation 
of fish oil in 
nano-
liposomes and 
its application 
in fortification 
of yogurt. 
(Ghorbanzade
, et al. 2017) 

Incorporate 
nano-
encapsulated 
fish oil by nano-
liposomes into 
yogurt and 
evaluate the 
physicochemic
al and sensory 
effect on yogurt 
quality 

Dynamic light 
scattering 
(Mastersizer) 
 
300-500nm 
 
Encapsulation 
of fish oil by 
nano 
liposomes 

Purified 
fish oil 
(fatty acid 
compositi
on not 
specified) 
 

Soy lecithin  Ultrasound  Fatty acid 
profile, 
Peroxide 
value, 
Sensory 
analysis, 
21 days 

Liposomal structures were successful for 
nanoencapsulation as DHA & EPA 
remained stable. 
Addition of nanoencapsulated fish oil to 
yogurt gave closer characteristics to 
control sample in terms of sensory 
parameters than yogurt with free 
(unencapsulated) fish oil.  

Enhancing 
omega-3 fatty 
acids 
nanoemulsion 
stability and in-
vitro 
digestibility 
through 
emulsifiers. 
(Karthik and 
Anandharama
krishnan 
2016a) 

Evaluation of 3 
different 
emulsifiers on 
the 
physiochemical 
stability and in-
vitro 
digestibility of 
DHA 
nanoemulsions 
produced by 
microfluidizatio
n.  
 

Oil in water 
nanoemulsion 
Laser light 
diffraction 
particle size 
analyser. 
Triplicate 
measurements
T-40 NE & 
NaCa = 
smaller size 
(206 
±0.034nm) 
SL – larger 
(760 ± 
0.131nm) 
 

DHA 
algae oil 
(38.11% 
DHA)  

10 w/w 
algae oil 
2.8% w/w   
solution) 

N/A Microfluidizer  Particle size 
Peroxide 
value  
Fatty acid 
profile,  
20 days 

Refrigerated T-40 emulsion exhibited 
lower lipid oxidation than the other 
emulsions. There was a significant 
difference in PV between T40 and SL (P 
< 0.05). There were no changes in the 
functional group and fatty acid profile of 
DHA after nanoemulsification.  
The T-40 emulsion appears to be more 
advantageous in terms of oxidative 
stability and in-vitro digestibility 
 

Physicochemi
cal properties 

Investigate 
effects of major 

Oil-in-water 
nanoemulsion 

Fish oil 
(FO) 

Whey 
protein 

N/A Ultrasound  Peroxide 
value 

A significant increase in TBARS for 
conventional emulsions compared to 
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and storage 
stability of 
ultrasound-
mediated WPI-
stabilised fish 
oil 
nanoemulsion
s. 
(Nejadmansou
ri, et al. 2016) 

parameters 
whey protein 
isolate, fish oil, 
weight ratio 
(WR) and pH) 
on 
characteristics 
of high 
intensity 
ultrasound 
mediated fish 
oil 
nanoemulsions 
Main focus on 
physicochemic
al properties, 
oxidative 
stability and 
fatty acids 
profile changes 
of the 
nanoemulsions 
for 1m storage 
at different 
temperatures 

1% (w/w) 
dispersed 
phase at 
different WPI-
to-oil ratios 
(ranging from 
0.5 to 1.5) and 
different pH 
values  
D43 & span 
Measured by 
static light 
scattering 
average 
particle size 
84nm 

EPA - 7% 
DHA - 
18% of 
total fatty 
acids 

isolate 
(WPI) 
into 5 mM 
buffer 
solution of 
pH7 
containing 
0.03% 
(w/w) 
sodium 
azide as an 
antimicrobi
al agent.  

TBARS 
Fatty acid 
profile  
28 days 

ultrasound emulsions (P < 0.05). The 
increased antioxidant capacity of WPI in 
nanoemulsions was likely due to 
sonochemical reactions from ultrasound 
treatment. The oxidation rate of the 
nanoemulsion at 25°C was more than 
4°C (P < 0.05) due to enhanced 
temperature.  

Fabrication of 
a nutrient 
delivery 
system of 
docosahexaen
oic acid 
nanoemulsion
s via high 
energy 
technique. 
(Karthik and 
Anandharama
krishnan 
2016b) 

Investigate 
high pressure 
homogenizatio
n. (HPH) High 
speed 
homogenizatio
n (HSH) and 
combination of 
the HSH + 
HPH 
techniques to 
produce stable 
DHA 
nanoemulsions 

Oil in water 
nanoemulsion  
Malvern 
zetasizer (z 
potential) 
Dynamic light 
scattering 
(particle size 
distribution) 
Refractive 
indices  
HSH & HPH 
combined 
mean particle 
range = 11.17 
& 11.31 

Algae oil 
38.11% 
DHA 

Tween-40 
(2.8% 
w/w)Algae 
oil 10%, 
w/w  
 

 High 
pressure 
homogenizer
s/high speed 
homogenizer
s  

Fatty acid 
profile 
TBARS, 
100 days 
 
 

There was no change in fatty acid 
profile or structural changes 
of DHA in any of the emulsions.  
Refrigerated HPH and HSH + 
HPH DHA exhibited lower lipid oxidation 
than the emulsion stored at other 
conditions (P < 0.05). Better stability 
achieved via HSH & HPH technique 
compared to HPH and could be used in 
future in the food industry to improve 
stability and bioavailability of omega 3 
delivery 
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HSH only = 87 
(nm diameter) 

Influence of an 
anionic 
polysaccharid
e on the 
physical and 
oxidative 
stability of 
omega-3 
nanoemulsion
s: Antioxidant 
effects of 
alginate. 
(Salvia-
Trujillo, et al. 
2016) 

Assessment of 
the impact of 
an anionic 
polysaccharide 
on the physical 
properties and 
chemical 
stability of fish 
oil-in-water 
nanoemulsions
. 

Oil in water 
Nanoemulsion 
Light scattering 
(Mastersizer) 
Particle size - 
D43 
Initial droplet 
diameter 
135nm 

Fish oil 
(Ropufa 
γ0 ω-3 
food oil) 
containin
g 101 mg 
of EPA/g 
of oil, 148 
mg of 
DHA/g oil, 
and a 
total of 
omega-3 
PUFA of 
312 mg/g 
of oil. 
Lemon oil 

Tween 80 
1% w/w 
Aqueous 
Oil phase 
10% (fish 
and lemon 
oil 50:50 
w/w)  
phase  mM 
acetic-
acetate 
buffer at pH 
3.0 

Sodium 
alginate 
(anionic) 
Chitosan 
(cationic) 
Methyl 
cellulose 
(non-ionic) 

Microfluidizer Hydroperoxi
des, 
TBARS 
20 days 

Chitosan and alginate were significantly 
more effective at inhibiting lipid 
oxidation (P < 0.05) Intermediate 
sodium alginate addition resulted in 
increases mean droplet sizes. 
Outcome - The use of alginate as a 
natural antioxidant in nanoemulsions 
can be effective; however, it also 
highlights the potential for this 
polysaccharide to promote physical 
instability 

Physical and 
oxidative 
stability of self-
emulsifying 
krill oil-in-
water 
emulsions. 
(Wu, et al. 
2016) 

To determine 
how conditions 
typical in foods 
impact the 
physical 
stability of krill 
oil-in-water 
emulsions and 
determine how 
antioxidants’ 
polarity 
influences the 
oxidative 
stability of krill 
oil-in-water 
emulsions 

1 wt% krill oil in 
water 
nanoemulsion
s 
Zetasizer 
(particle size 
distribution) 
determined 
after emulsion 
preparation 
and every day 
during each 
experiment. 
Particle size 
range – 150-
165nm 

Integral 
phospholi
pid 
emulsifier
s within 
Krill oil 
(30% 
EPA and 
DHA 32% 
phospholi
pids) 

1% krill oil 
99 wt% mM 
acetic acid 
buffer 
pH7 

α-
tocopherol  
Trolox 

Microfluidizer Hydroperoxi
des  
TBARS,  
8 days 

Lipid oxidation was accelerated by 
ferrous chloride (P < 0.05). 
All α -tocopherol concentrations 
decreased lipid hydroperoxides (P < 
0.05). Addition of α-tocopherol after 
homogenisation inhibited hydroperoxide 
and TBAR formation (P < 0.05). 
Iron was a strong pro-oxidant and trolox 
was a better antioxidant than α -
tocopherol 
 

Phytosterol 
structured 
algae oil 
nanoemulsion 
and powders: 
improving 

Reduce or 
delay 
 oxidation and 
off-flavours by 
phytosterols 
structured in 

Algae oil 
(wt10%) in 
water 
nanoemulsion 

DHA 
algae oil 
LCω3PU
FA 
content 
40% 

Quillaja 
saponin 1.4 
wt% Algae 
oil 10% wt  
surfactant 
dispersed 

ȕ-sitosterol 
Ȗ-oryzanol 
campestero
l 

Ultrasound Peroxide 
value  
GCHS 
Characteris
ation of 
spray dried 

Spray dried algae oil powders from 
structured nanoemulsions exhibit 
excellent reconstructed behaviour up to 
30 d of storage.  
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antioxidant 
and flavour 
properties. 
(Chen, et al. 
2016) 

saponin-
stabilised 
algae oil-in-
water 
nanoemulsions 
and spray-
dried powders 
made from the 
nanoemulsion 
templates 

Dynamic light 
scattering 
(Zetasizer) 
Particle size 
range = 152 - 
164nm  

within an 
deionised 
water 
aqueous 
phase 
Phosphate 
buffer (pH 
7.0) 

powders 
(examining 
microstruct
ure and 
reconstitutio
n 
behaviour), 
30 days 

Formulation with ȕ-sitosterol & Ȗ-
oryzanol resulted in enhanced oxidative 
stability (P < 0.05) 
Structured algae oil-loaded 
nanoemulsion and powder had lower 
levels of fishy off-flavour  
Phytosterols are an effective strategy to 
reduce off-flavours and maximize 
oxidative stability of both algae oil 
nanoemulsions and spray dried 
powders 

Physical and 
oxidative 
stability of fish 
oil 
nanoemulsion
s produced by 
spontaneous 
emulsification: 
Effect of 
surfactant 
concentration 
and particle 
size. (Walker, 
et al. 2015b) 

To examine 
the potential of 
spontaneous 
emulsification 
to fabricate fish 
oil 
nanoemulsions 
that are 
suitable for 
application in 
clear 
beverages.  

Oil in water 
nanoemulsion 
(10 wt% total 
oil phase) 
Measured with 
either 
Zetasizer 
(dynamic) or 
Mastersizer 
(static light 
scattering) 
D32 (for large 
droplets) 
Z-average 
(small 
droplets) 

Fish oil 
and 
lemon oil 
(FO) 
(Ropufa 
γ0 ω-3 
food oil) 
containin
g 101 mg 
of EPA/g 
of oil, 148 
mg of 
DHA/g oil, 
and 
312 mg of 
total ω-3 
PUFA/g 
of oil.  
 

Tween 80 
non-ionic 
(2.5– 
20 wt%) 5 
wt % fish oil 
5 wt% 
lemon oil  
Tween 80. 
Aqueous 
phase was 
70–87.5 
wt% double 
distilled 
water with  
buffer 0.8 
wt% citric 
acid and 
0.08 wt% 
sodium 
benzoate at 
pH 3.0,  
Emulsions 
prepared 
using 
different 
surfactant -
to-oil ratios 
(SOR) 
 

Butylated 
hydroxytolu
ene. 
Sodium 
benzoate. 
Citric acid 

Microfluidizer 
(MF), 
Spontaneous 
emulsificatio
n (SOR) 

Peroxide 
value 
TBARS, 14 
days 

All emulsions reached a peak for 
hydroperoxides levels after 12 days. 
Low energy systems with added 
surfactant had slightly higher 
hydroperoxides values than other 
emulsions towards the end of the study. 
The MF emulsion reached the highest 
TBARS value within the 14 days. 
Neither particle size nor surfactant 
concentration had a major impact on the 
rate of lipid oxidation in the fish oil 
emulsions. 
Low-energy homogenization methods 
(spontaneous emulsification) can be 
used to produce fish oil emulsions that 
may be suitable to fortify transparent 
food or beverage systems. 
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Physical 
Stability, 
Autoxidation, 
and 
Photosensitize
d Oxidation of 
ω-3 Oils in 
Nanoemulsion
s Prepared 
with Natural 
and Synthetic 
Surfactants. 
(Uluata, et al. 
2015) 

How synthetic 
and natural 
emulsifiers 
impacted the 
physical 
stability of 
nanoemulsions
, autoxidation, 
and 
photosensitize
d lipid 
oxidation in oil-
in-water 
emulsions.  

Oil in water 
Nanoemulsion 
Particle 
electrophoresi
s instrument 
Z-potential 
Mean particle 
diameter of all 
samples was 
lower than 
100nm 

Fish oil 
ethyl 
ester 
containin
g 55% 
omega-3 
fatty acids 

lecithin & 
quillaja 
saponin 
natural 
emulsifiers 
Tween 80 & 
sodium 
dodecyl 
sulfate 
(SDS) 
synthetic 
emulsifiers 
1.5 wt % 
and 10 mM 
sodium 1% 
fish oil 99% 
aqueous 
phases. 
Phosphate 
buffer 
solution (pH 
7).  

 Microfluidizer Particle size  
Oxygen 
radical 
absorption 
assay 
(ORAC) 
Hydroperoxi
des, GCHS 
(propanal),  
7 days 

After 5 days storage hydroperoxide 
formation and propanal were in the 
order Tween 80 > SDS > lecithin > 
quillaja saponin and lecithin > Tween 80 
> SDS > quillaja saponin respectively. 
Lecithin stabilised emulsions showed 
increased oxidation with light exposure. 
ORAC values showed Tween 80 had a 
significantly higher free radical 
scavenging capacity (P ≤ 0.05)  
Quillaja saponin is an effective 
emulsifier for ω-3 ethyl ester 
nanoemulsions due to its physical and 
oxidative stability. 

Preparation & 
characterizatio
n of novel 
nanocarriers 
containing krill 
oil for food 
application. 
(Zhu, et al. 
2015)  

To Evaluate 
suitability and 
effectiveness 
of NLC (Nan 
structured lipo 
carriers) as a 
delivery 
system to 
encapsulate 
krill oil and 
investigate 
chemical and 
physical 
stability of the 
prepared NLC. 

Oil in water  
Nanoemulsion 
Zetasizer  
Nano ZS90 
ZP value - 
31.0mV, 
332nm. 

Antarctic 
krill oil 
(14.8% 
DHA, 
22.5% 
EPA and 
250 
mg/kg 
astaxanth
in). Total 
lipid 
phase 
(w/w) 
(X1) 

Lecithin 
surfactant 
(w/w) (X2) 
in double 
distilled 
water to 
make  
aqueous 
solution 
Differing 
ratios of krill 
and palm oil 
used.  
 

 Ultrasound  Photostabili
ty and 
assay of 
bioactive 
constituents 
(DHA, EPA 
and 
astaxanthin
), 70 days 

NLC offers bioactives in krill oil giving 
significant protection against 
photooxidation upon exposure to UV 
light (P < 0.05). Good physical and 
chemical stabilities during long-term 
storage at different temperatures. 
Feasibilities of pasteurization and 
lyophilization were also demonstrated 
Novel nanocarriers containing krill oil 
could be used in functional drinks and 
milk powders 

Preparation of 
nanoemulsion
s containing 
unsaturated 

To prepare 
nanoemulsions 
containing 
capsules of 

Oil in water  
Zetasizer 
All 
nanoemulsion

Carp oil, 
PUFA 
content 
35.6% 

Tween 80. 
1 % w/v 
chitosan 
powder, 5% 

N/A High speed 
homogenizati
on at 10,000 
rpm 

Peroxide 
value (PV), 
45 days  

PV from carp oil and UFAC 
nanocapsules similar at baseline. PV for 
UFAC nanocapsules remained stable 
during storage while oil PV increased. 
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fatty acid 
concentrate–
chitosan 
capsules 
(Esquerdo, et 
al. 2015)  

unsaturated 
fatty acid 
concentrate 
(UFAC) using 
chitosan as 
wall material 
(UFAC–
chitosan 
nanocapsules) 
and determine 
the stability 

s presented 
capsules in the 
nanometric 
scale 
boundaries, 
smallest size 
332nm 

bleached 
oil and 
UFAC 
50.1% 
respectiv
ely. 15 or 
30% oil in 
ultra pure 
water 

w/w Tween 
80, Acetic 
acid 
solution 
(1% w/v) 
Then, the 
surfactant 
Tween 80 
(5% w/w, 
in relation 
to chitosan) 
added. 

PV values demonstrated that the 
microstructure was able to protect the 
UFAC against primary oxidation. The 
encapsulation efficiency was 74.1%, 
Chitosan has potential to be used as 
encapsulating agent for UFAC. 

Optimization 
of walnut oil 
Nanoemulsion
s prepared 
using 
ultrasonic 
emulsification: 
A response 
surface 
method. 
(Homayoonfal, 
et al. 2014) 

To investigate 
the emulsifying 
conditions 
including 
ultrasonic time 
(UT) & 
concentration 
ratio on the 
particle size, 
Span, and loss 
of antioxidant 
activity (LAA) 
of walnut oil-
nanoemulsions 

Oil in water 
nanoemulsion 
Lazer light 
scattering. D43 
Average 
particle size 
338 – 450nm 

Walnut oil 
(Fatty 
acid 
compositi
on not 
stated)  

Tween 
80/Span 80 
0.7, 0.5 and 
0.3 ratio  
(deionised 
water 
aqueous 
phase)Wal
nut oil 
disperse 
phase 8, 6 
and 4% 
w/w. 0.01% 
w/w  

Sodium 
azide 
(0.01% 
w=w)  

Ultrasound Response 
surface 
methodolog
y (RSM) 
modelling. 
Loss of 
antioxidant 
activity 
(LAA), 35 
days  

The quadratic effect of UT was 
significant in LAA (P < 0.05). The 
enhancement of UT reduced the d43 and 
span, while this led to increased loss of 
antioxidant activity  

Comparative 
study of the 
oxidative and 
physical 
stability of 
liposomal and 
nanoliposomal 
polyunsaturat
ed fatty acids 
prepared with 
conventional 
and Mozafari 
methods 
(Rasti et al. 
2012) 

Evaluate and 
compare the 
physiochemical 
properties of 
PUFA 
liposomes and 
nanoliposomes 
created using 
the Mozafari 
method 
(liposomes 
prepared by 
direct hydration 
and without 
solving the PL 

Oil in water 
liposomal 
suspensions, 
zetasizer, 
liposomes 
362.5nm and 
nanoliposome
s 316.5nm 
respectively  

Fish oil 
DHA and 
EPA 2:3, 
400mg/g 

Lecithin. 
Fish oil and 
lecithin 
2:0.4 mass 
ratio, 2% 
v/v oil in 
water 

N/A Ultrasound Conjugated 
dienes and 
cyclic 
peroxides.  

A significantly (P < 0.05) higher 
concentration of conjugated dienes and 
TBARS than was found in the initial 
values, was observed in liposomes 
prepared using the conventional 
method. In contrast, liposomes prepared 
with the Mozafari method did not show a 
significant increase (P < 0.05) in 
conjugated dienes and TBARS content 
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and FAs in 
organic 
solvents) 

Oxidative 
kinetics of 
salmon oil in 
bulk and in 
nanoemulsion 
stabilised by 
marine 
lecithin. 
(Belhaj, et al. 
2010) 

To examine 
the preparation 
and 
characterisatio
n of different 
formulations of 
nanoemulsions 
composed of 
salmon oil and 
marine lecithin 
with or without 
antioxidants 

Oil in water 
nanoemulsion 
5 different 
samples with 
different ratios 
of crude 
salmon oil, 
marine 
lecithin, alpha-
tocopherol & 
water) 
Zetasizer 
Droplet range 
for most 
samples 
ranged 
between 200 – 
207nm. One 
sample had a 
droplet size of 
160nm due to 
high polar 
lipids 

Salmon 
oil in 5 
different 
formats, 
fatty acid 
compositi
on of oils 
not 
presente
d.   

Lecithin. 
10% oil in 
deionised 
water 
marine 
lecithin 
quercetin α-
tocopherol 
in different 
ranges)  

α-
tocopherol 
E307), 
astaxanthin
, quercetin, 
lecithin 
from 
salmon 
heads:  
 

High-
pressure 
valve 
homogenizer  

Polyene 
index, 
conjugated 
dienes (GC) 
fourier 
transform 
infrared 
spectroscop
y (FT-IR), 
40 days  

Crude salmon oil was well-protected by 
its own natural antioxidant (tocopherol 
and astaxanthin). Salmon oil with 
marine lecithin was the most stable to 
oxidation. The use of marine 
phospholipids as emulsifiers in 
nanoemulsions preparation increases 
notably the 
stability of salmon oil against oxidation 
with a rise in LC-PUFA availability, 
especially in DHA. 

 


