5 research outputs found

    Subtle pH variation around pH 4.0 affects aggregation kinetics and aggregate characteristics of recombinant human insulin

    Get PDF
    Insulin is a biotherapeutic protein, which, depending on environmental conditions such as pH, has been shown to form a large variety of aggregates with different structures and morphologies. This work focuses on the formation and characteristics of insulin particulates, dense spherical aggregates having diameters spanning from nanometre to low-micron size. An in-depth investigation of the system is obtained by applying a broad range of techniques for particle sizing and characterisation. An interesting observation was achieved regarding the formation kinetics and aggregate characteristics of the particulates; a subtle change in the pH from pH 4.1 to pH 4.3 markedly affected the kinetics of the particulate formation and led to different particulate sizes, either nanosized or micronsized particles. Also, a clear difference between the secondary structure of the protein particulates formed at the two pH values was observed, where the nanosized particulates had an increased content of aggregated β-structure compared to the micronsized particles. The remaining characteristics of the particles were identical for the two particulate populations. These observations highlight the importance of carefully studying the formulation design space and of knowing the impact of parameters such as pH on the aggregation to secure a drug product in control. Furthermore, the identification of particles only varying in few parameters, such as size, are considered highly valuable for studying the effect of particle features on the immunogenicity potential.Drug Delivery Technolog

    The forgotten D: challenges of addressing forest degradation in complex mosaic landscapes under REDD+

    No full text
    International climate negotiations have stressed the importance of considering emissions from forest degradation under the planned REDD+ (Reducing Emissions from Deforestation and forest Degradation + enhancing forest carbon stocks) mechanism. However, most research, pilot-REDD+ projects and carbon certification agencies have focused on deforestation and there appears to be a gap in knowledge on complex mosaic landscapes containing degraded forests, smallholder agriculture, agroforestry and plantations. In this paper we therefore review current research on how avoided forest degradation '… may affect emissions of greenhouse gases …' (GHG) and expected co-benefits in terms of biodiversity and livelihoods. There are still high uncertainties in measuring and monitoring emissions of carbon and other GHG from mosaic landscapes with forest degradation since most research has focused on binary analyses of forest vs. deforested land. Studies on the impacts of forest degradation on biodiversity contain mixed results and there is little empirical evidence on the influence of REDD+ on local livelihoods and tenure security, partly due to the lack of actual payment schemes. Governance structures are also more complex in landscapes with degraded forests as there are often multiple owners and types of rights to land and trees. Recent technological advances in remote sensing have improved estimation of carbon stock changes but establishment of historic reference levels is still challenged by the availability of sensor systems and ground measurements during the reference period. The inclusion of forest degradation in REDD+ calls for a range of new research efforts to enhance our knowledge of how to assess the impacts of avoided forest degradation. A first step will be to ensure that complex mosaic landscapes can be recognised under REDD+ on their own merits. (Résumé d'auteur
    corecore