329 research outputs found

    GTAP-E: An Energy-Environmental Version of the GTAP Model with Emission Trading

    Get PDF
    Energy is an important commodity in many economic activities. Its usage affects the environment via CO2 emissions and the Greenhouse Effect. Modeling the energy-economy-environment-trade linkages is an important objective in applied economic policy analysis. Previously, however, the modeling of these linkages in GTAP has been incomplete. This is because energy substitution, a key factor in this chain of linkages, is absent from the standard model specification. This technical paper remedies this deficiency by incorporating energy substitution into the standard GTAP model. It begins by first reviewing some of the existing approaches to this problem in contemporary CGE models. It then suggests an approach for GTAP which incorporates some of these desirable features of energy substitution. The approach is implemented as an extended version of the GTAP model called GTAP-E. In addition, GTAP-E incorporates carbon emissions from the combustion of fossil fuels and this revised version of GTAP-E provides for a mechanism to trade these emissions internationally as well as domestically. The policy relevance of GTAP-E in the context of the existing debate about climate change is illustrated by some illustrative simulations of the implementation the European emissions trading scheme in 2005. It is hoped that the proposed model will be used by individuals in the GTAP network who may not be themselves energy modelers, but who require a better representation of the energy-economy-environmental linkages than is currently offered in the standard GTAP model.

    GTAP-E: An Energy-Environmental Version of the GTAP Model

    Get PDF
    Energy is an important commodity in many economic activities. Its usage affects the environment via CO2 emissions and the Greenhouse Effect. Modeling the energy-economy-environment-trade linkages is an important objective in applied economic policy analysis. Previously, however, the modeling of these linkages in GTAP has been incomplete. This is because energy substitution, a key factor in this chain of linkages, is absent from the standard model specification. This technical paper remedies this deficiency by incorporating energy substitution into the standard GTAP model. It begins by first reviewing some of the existing approaches to this problem in contemporary CGE models. It then suggests an approach for GTAP which incorporates some of these desirable features of energy substitution. The approach is implemented as an extended version of the GTAP model called GTAP-E, which includes the standard GTAP model as a special case. In addition, GTAP-E incorporates carbon emissions from the combustion of fossil fuels and this revised version of GTAP-E provides for a mechanism to trade these emissions internationally. The resulting behavior of agents in the model is analyzed using general equilibrium demand elasticities which summarize the combined effect of the new model specification. Implications for policy analysis are demonstrated via a simple simulation experiment in which global carbon emissions are reduced via a carbon tax. Results show that incorporating energy substitution into GTAP is essential for conducting analysis of this problem. The policy relevance of GTAP-E in the context of the existing debate about climate change is illustrated by some simulations of the implementation of the Kyoto Protocol. It is hoped that the proposed model will be used by individuals in the GTAP network who may not be themselves energy modelers, but who require a better representation of the energy-economy linkages than is currently offered in the standard GTAP model

    Trade Liberalization and Climate Change: A Computable General Equilibrium Analysis of the Impacts on Global Agriculture

    Get PDF
    Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the A1B and A2 scenarios of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES), this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture, and its interactions with trade liberalization, as proposed for the Doha Development Round. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Significant reductions in agricultural tariffs lead to modest changes in regional water use. Patterns are non-linear. On the regional level, water use may go up for partial liberalization, and down for more complete liberalization. This is because different crops respond differently to tariff reductions, and because trade and competition matter too. Moreover, trade liberalization tends to reduce water use in water scarce regions, and increase water use in water abundant regions, even though water markets do not exist in most countries. Considering impacts of climate change, the results show that global food production, welfare and GDP fall over time while food prices increase. Larger changes are observed under the SRES A2 scenario for the medium term (2020) and under the SRES A1B scenario for the long term (2050). Combining scenarios of future climate change with trade liberalization, countries are affected differently. However, the overall effect on welfare does not change much

    The Impact of Border Carbon Adjustments under Alternative Producer Responses

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/)Border carbon adjustments (BCAs) have been proposed to address leakage and competitiveness concerns. In traditional assessments, firms regard BCAs as output taxes rather than implicit emissions taxes. Using a stylized energy-economic model, we analyze the impact of BCAs for alternative producer responses. When firms view BCAs as an implicit emissions tax, the outcome depends on whether or not firms can differentiate production across destination markets. If firms are able to produce a low-emissions variety for regions imposing BCAs, results are similar to when firms regard BCAs as an output tax. If firms produce a single variety for all markets, BCAs result in larger leakage reductions than in standard approaches. We also find that BCAs are less effective at addressing competitive concerns in scenarios that result in larger leakage reductions.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors

    Energy substitution, technical change and rebound effects

    Get PDF
    This paper investigates the relationships between energy efficiency improvements by producers, the ease of substitution between energy and other inputs and the size of the resulting “rebound effects”. Fundamentally, easier substitution leads to larger rebounds. Focusing upon conceptual and methodological issues, the paper highlights the challenges of estimating and modeling rebound effects with the help of production and cost functions and questions the robustness of the evidence base in this area. It argues that the multiple definitions of “elasticities of substitution” are a source of confusion, the most commonly estimated elasticity is of little practical value, the empirical literature is contradictory, prone to bias and difficult to use and there are only tenuous links between this literature and the assumptions used within energy-economic models. While “energy-augmenting technical change” provides the natural choice of independent variable for an estimate of rebound effects, most empirical studies do not estimate this form of technical change, many modeling studies do not simulate it and others simulate it in such a way as to underestimate rebound effects. As a result, the paper argues that current econometric and modeling studies do not provide reliable guidance on the magnitude of rebound effects in different industrial sectors

    Can Tariffs be Used to Enforce Paris Climate Commitments?

    Get PDF
    We evaluate the potential for using border carbon adjustments (BCAs) and welfare-maximizing tariffs to compel non-compliant countries to meet emissions reduction targets pledged under the Paris Climate Agreement. Our analysis employs a numerical economy-wide model with energy sector detail and, given recent actions by the new US administration, considers BCAs on US exports. We find that BCAs result in small reductions in US emissions and welfare. Consequently, the US is better off when it does not restrict emissions and faces BCAs on its exports than when it implements policies consistent with the Paris Agreement. However, targeted welfare-maximizing tariffs could inflict greater cost on the US than if it complied with its pledged emissions reductions. We conclude that BCAs are an ineffective enforcement mechanism but carefully chosen tariffs could be a mechanism to enforce the Paris Agreement

    From theory to econometrics to energy policy : Cautionary tales for policymaking using aggregate production functions

    Get PDF
    Development of energy policy is often informed by economic considerations via aggregate production functions (APFs). We identify a theory-to-policy process involving APFs comprised of six steps: (1) selecting a theoretical energy-economy framework; (2) formulating modeling approaches; (3) econometrically fitting an APF to historical economic and energy data; (4) comparing and evaluating modeling approaches; (5) interpreting the economy; and (6) formulating energy and economic policy. We find that choices made in Steps 1-4 can lead to very different interpretations of the economy (Step 5) and policies (Step 6). To investigate these effects, we use empirical data (Portugal and UK) and the Constant Elasticity of Substitution (CES) APF to evaluate four modeling choices: (a) rejecting (or not) the cost-share principle; (b) including (or not) energy; (c) quality-adjusting (or not) factors of production; and (d) CES nesting structure. Thereafter, we discuss two revealing examples for which different upstream modeling choices lead to very different policies. In the first example, the (kl)e nesting structure implies significant investment in energy, while other nesting structures suggest otherwise. In the second example, unadjusted factors of production suggest balanced investment in labor and energy, while quality-adjusting suggests significant investment in labor over energy. Divergent outcomes provide cautionary tales for policymakers: greater understanding of upstream modeling choices and their downstream implications is needed
    • 

    corecore