237 research outputs found
Neutron scattering study of transverse magnetism
In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed
Non-Collinear Magnetism due to Orbital Degeneracy and Multipolar Interactions
The origin of non-collinear magnetism under quadrupolar ordering is
investigated with CeB6 taken as a target system. The mode-mixing effect among
15 multipoles is analyzed based on the Ginzburg-Landau free energy. Then the
lower magnetic transition temperature and the order parameters are derived
within the mean-field approximation. In the presence of pseudo-dipole-type
interactions for the next-nearest neighbors, the observed pattern of
non-collinear ordering is indeed stabilized for certain set of interaction
parameters. The stability of the phase III' in the magnetic field is also
explained, which points to the importance of the next-nearest-neighbor
octupole-octupole interaction. Concerning the phase IV in CexLa1-xB6 with x ~
0.75, a possibility of pure octupole ordering is discussed based on slight
modifications of the strength of interactions.Comment: 12 pages, 7 figures, 3 tables, to appear in J. Phys. Soc. Jpn. 70 (6)
(2001
Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions
This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a
lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which
includes all the 3d states of the Cu ions and the 2p states of the O ions. We
also include spin-orbit interactions, hopping between ground and excited
crystal field states of the Cu ions, and rather general Coulomb interactions.
Our analytic results for the spin Hamiltonian, H, are corroborated by numerical
evaluations of the energy splitting of the ground manifold for two holes on
either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case
and for the model considered, we prove that H is rotationally invariant in the
absence of Coulomb exchange. When Coulomb exchange is present, each bond
Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For
lower symmetry situations, the single bond spin Hamiltonian is anisotropic at
order t**6 for constant U and at order t**2 for nonconstant U. (Constant U
means that the Coulomb interaction between orbitals does not depend on which
orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989
HA-MOP knockin mice express the canonical ”-opioid receptor but lack detectable splice variants
G protein-coupled receptors (GPCRs) are notoriously difficult to detect in native tissues. In an effort to resolve this problem, we have developed a novel mouse model by fusing the hemagglutinin (HA)-epitope tag sequence to the amino-terminus of the ”-opioid receptor (MOP). Although HA-MOP knock-in mice exhibit reduced receptor expression, we found that this approach allowed for highly efficient immunodetection of low abundant GPCR targets. We also show that the HA-tag facilitates both high-resolution imaging and immunoisolation of MOP. Mass spectrometry (MS) confirmed post-translational modifications, most notably agonist-selective phosphorylation of carboxyl-terminal serine and threonine residues. MS also unequivocally identified the carboxyl-terminal 387LENLEAETAPLP398 motif, which is part of the canonical MOP sequence. Unexpectedly, MS analysis of brain lysates failed to detect any of the 15 MOP isoforms that have been proposed to arise from alternative splicing of the MOP carboxyl-terminus. For quantitative analysis, we performed multiple successive rounds of immunodepletion using the well-characterized rabbit monoclonal antibody UMB-3 that selectively detects the 387LENLEAETAPLP398 motif. We found that >98% of HA-tagged MOP contain the UMB-3 epitope indicating that virtually all MOP expressed in the mouse brain exhibit the canonical amino acid sequence
Restauration morpho-dynamique et redynamisation de la section court-circuitée du Rhin en aval du barrage de Kembs (projet INTERREG / EDF)
National audienceThe Upper Rhine River has been heavily impacted by channelization for flood protection and navigation, and then by damming for hydropower generation. In normal non flooding conditions, most of the flows are diverted in a canalized section whereas the regulated âold Rhineâ bypassed reach runs a minimum flow. Between Huningue and Neuf-Brisach, engineering works induced simplification and stabilization of the channel pattern from a formerly braiding sector to a single incised channel, hydrological modifications, bottom armouring due to bedload decrease, and thus ecological alterations. Two complementary and interdisciplinary projects have been initiated to restore alluvial morphodynamics: i) the international âINTERREG IV - Redynamisation of the old Rhineâ project (2009-2012) coordinated by the Alsace region, France; ii) the left bank âcontrolled erosionâ project launched by ElectricitĂ© de France (EDF) within Kembs hydroelectric station relicensing process since 2003-2004. The purpose of these projects is to evaluate the feasibility of an important hydro-morphological and ecological restoration plan on a 45 km long reach, through both field testing of bank erosion techniques at favourable locations, and artificial sediments input from right bank excavations. This will help define possible long term prospective scenarios, in order to restore sustainable sediment transport, morphodynamics variability and associated ecological functions. The study will involve historical analysis, hydro-morphological / hydraulic physical and numerical modelling, physical and ecological monitoring, and sociological aspectsLe Rhin alsacien-allemand a enregistrĂ© de profondes modifications morphologiques et hydrologiques Ă la suite de sa correction et de sa rĂ©gularisation pour la protection contre les crues et la navigation, puis aprĂšs la construction de barrages hydro-Ă©lectriques. Les amĂ©nagements rĂ©alisĂ©s entre Huningue et Neuf-Brisach ont engendrĂ© une simplification et une stabilisation du style fluvial. Un fleuve en tresses a cĂ©dĂ© la place Ă un chenal unique incisĂ©. Le fond de chenal est devenu pavĂ© Ă cause dâune diminution des apports de charge de fond et des altĂ©rations Ă©cologiques ont Ă©tĂ© observĂ©es (simplification des habitats aquatiques et riverains). Deux projets complĂ©mentaires et interdisciplinaires ont Ă©tĂ© engagĂ©s afin de restaurer une dynamique des formes alluviales : i) le projet international INTERREG IV â Redynamisation du Vieux Rhin (2009-2012) sous lâimpulsion de la rĂ©gion Alsace ; ii) le projet dâĂ©rosion maitrisĂ©e des berges de la rive gauche conduit par ElectricitĂ© de France (EDF) dans le cadre du renouvellement de la concession de lâamĂ©nagement de Kembs. Lâobjectif des deux projets est de dĂ©finir un plan de restauration hydro-morphologique et Ă©cologique conduisant Ă la redynamisation dâun tronçon de 45 km. LâĂ©tude repose sur une analyse historique, lâexploitation de modĂšles Ă la fois physiques et numĂ©riques, et les suivis morphologiques in situ dâune recharge artificielle en sĂ©diments et dâĂ©rosions de berge contrĂŽlĂ©es. Ces Ă©tudes de faisabilitĂ© sont complĂ©tĂ©es par des analyses Ă©cologique et sociologique pour apprĂ©cier lâimpact socio-environnemental de ces projets
Mass spectrometry-based absolute quantification of 20S proteasome status for controlled ex-vivo expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells
The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNÎł-treatment and in range of human tissues. It was then successfully applied to reveal IFNÎł- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects
- âŠ