295 research outputs found

    Impact micro-positioning actuator

    Get PDF
    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut

    Planet Discoverer Interferometer (PDI) I: a potential precursor to Terrestrial Planet Finder

    Get PDF
    We consider a possible precursor interferometer to Terrestrial Planet Finder. The precursor called Planet Discoverer Interferometer (PDI) would search for broadband 10 μm radiation from possible terrestrial planets orbiting stars out to a distance of 8-10pc and at an angular separation of at least 0.1 arcseconds. There are about 20 stars of types A,F,G and K around which an Earth-analog might be detected. PDI would be able to confirm such planets by seeing their orbital motion. PDI would also be able to observe 5 μm radiation from the more massive and younger gas-giant planets around stars up to distances ∼ 150 pc, separated from their star by more than 0.05 arc seconds. It would also see the re-radiated thermal radiation of Jupiter-like planets at temperatures above ∼130K. The device would be a 15m long truss with four SIRTF-like telescopes. It would need to be in a SIRTF-like Earth-trailing orbit, and would be radiatively cooled. A very preliminary design suggest that PDI could fit into the shroud of a Delta II rocket. Similar preliminary calculations suggest that the total lifetime cost of such a mission would be under $300M. Detailed studies of this concept are in process

    Infrared Computer-Generated Holograms: Design and Application for the WFIRST Grism Using Wavelength-Tuning Interferometry

    Get PDF
    Interferometers using computer-generated holograms (CGHs) have become the industry standard to accurately measure aspheric optics. The CGH is a diffractive optical element that can create a phase or amplitude distribution and can be manufactured with low uncertainty using modern lithographic techniques. However, these CGHs have conventionally been used with visible light and piezo-shifting interferometers. Testing the performance of transmissive optics in the infrared requires infrared CGHs and an infrared interferometer. Such an instrument is used in this investigation, which introduces its phase shift via wavelength-tuning. A procedure on how to design and manufacture infrared CGHs and how these were successfully used to model and measure the Wide-Field Infrared Survey Telescope grism elements is provided. Additionally, the paper provides a parametric model, simulation results, and calculations of the errors and measurements that come about when interferometers introduce a phase variation via wavelength-tuning interferometry to measure precision aspheres

    Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools

    Get PDF
    After the formal acceptance of our fabrication of E-ELT segments, we aim to further accelerate the mass production by introducing an intermediate grolishing procedure using industrial robots, reducing the total process time by this much faster and parallel link. In this paper, we have presented research outputs on tool design, tool path generation, study of mismatch between rigid, semi-rigid tool and aspheric surface. It is indicated that the generation of mid-spatial frequency is proportional to the grit size and misfit between work piece and tool surfaces. Using a Non-Newtonian material tool with a spindle speed of 30 rpm has successfully reduce the mid-spatial error. The optimization of process parameters involve the study the combination effects of the above factors. These optimized parameters will result in a lookup table for reference of given input surface quality. Future work may include the higher spindle speed for grolishing with non- Newtonian tool looking for potential applications regarding to form correction, higher removal rate and edge contro

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Semantic inferentialism as (a form of) active externalism

    Get PDF
    Within contemporary philosophy of mind, it is taken for granted that externalist accounts of meaning and mental content are, in principle, orthogonal to the matter of whether cognition itself is bound within the biological brain or whether it can constitutively include parts of the world. Accordingly, Clark and Chalmers (Analysis 58(1):7–19, 1998) distinguish these varieties of externalism as ‘passive’ and ‘active’ respectively. The aim here is to suggest that we should resist the received way of thinking about these dividing lines. With reference to Brandom’s (1994, 2000, Inquiry 47:236–253, 2008) broad semantic inferentialism, we show that a theory of meaning can be at the same time a variety of active externalism. While we grant that supporters of other varieties of content externalism (e.g., Putnam 1975 and Burge (Philosophical Review 95:3–45, 1986) can deny active externalism, this is not an option for semantic inferentialists: On this latter view, the role of the environment (both in its social and natural form) is not ‘passive’ in the sense assumed by the alternative approaches to content externalism

    An efficient stable optical polariser module for calibration of the S4UVN earth observation satellite

    Get PDF
    We describe here an optical polariser module intended to deliver well characterised polarised light to an imaging spectrometer instrument. The instrument in question is the Sentinel-4/UVN Earth observation imaging spectrometer due to be deployed in 2019 in a geostationary orbit. The polariser module described here will be used in the ground based calibration campaign for this instrument. One critical task of the calibration campaign will be the highly accurate characterisation of the polarisation sensitivity of instrument. The polariser module provides a constant, uniform source of linearly polarised light whose direction can be adjusted without changing the output level or uniformity of the illumination. A critical requirement of the polariser module is that the illumination is uniform across the exit pupil. Unfortunately, a conventional Glan-Taylor arrangement cannot provide this uniformity due to the strong variation in transmission at a refractive surface for angles close to the critical angle. Therefore a modified prism arrangement is proposed and this is described in detail. Detailed tolerance modelling and straylight modelling is also reported here

    A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: findings from a multi-cohort study

    Get PDF
    Summary: This observational study assessed vertical impacts experienced in older adults as part of their day-to-day physical activity using accelerometry and questionnaire data. Population-based older adults experienced very limited high-impact activity. The accelerometry method utilised appeared to be valid based on comparisons between different cohorts and with self-reported activity. Introduction: We aimed to validate a novel method for evaluating day-to-day higher impact weight-bearing physical activity (PA) in older adults, thought to be important in protecting against osteoporosis, by comparing results between four cohorts varying in age and activity levels, and with self-reported PA levels. Methods: Participants were from three population-based cohorts, MRC National Survey of Health and Development (NSHD), Hertfordshire Cohort Study (HCS) and Cohort for Skeletal Health in Bristol and Avon (COSHIBA), and the Master Athlete Cohort (MAC). Y-axis peaks (reflecting the vertical when an individual is upright) from a triaxial accelerometer (sampling frequency 50 Hz, range 0–16 g) worn at the waist for 7 days were classified as low (0.5–1.0 g), medium (1.0–1.5 g) or higher (≥1.5 g) impacts. Results: There were a median of 90, 41 and 39 higher impacts/week in NSHD (age 69.5), COSHIBA (age 76.8) and HCS (age 78.5) participants, respectively (total n = 1512). In contrast, MAC participants (age 68.5) had a median of 14,322 higher impacts/week. In the three population cohorts combined, based on comparison of beta coefficients, moderate-high-impact activities as assessed by PA questionnaire were suggestive of stronger association with higher impacts from accelerometers (0.25 [0.17, 0.34]), compared with medium (0.18 [0.09, 0.27]) and low impacts (0.13 [0.07,0.19]) (beta coefficient, with 95 % CI). Likewise in MAC, reported moderate-high-impact activities showed a stronger association with higher impacts (0.26 [0.14, 0.37]), compared with medium (0.14 [0.05, 0.22]) and low impacts (0.03 [−0.02, 0.08]). Conclusions: Our new accelerometer method appears to provide valid measures of higher vertical impacts in older adults. Results obtained from the three population-based cohorts indicate that older adults generally experience very limited higher impact weight-bearing PA

    Patterns of Intron Gain and Loss in Fungi

    Get PDF
    Little is known about the patterns of intron gain and loss or the relative contributions of these two processes to gene evolution. To investigate the dynamics of intron evolution, we analyzed orthologous genes from four filamentous fungal genomes and determined the pattern of intron conservation. We developed a probabilistic model to estimate the most likely rates of intron gain and loss giving rise to these observed conservation patterns. Our data reveal the surprising importance of intron gain. Between about 150 and 250 gains and between 150 and 350 losses were inferred in each lineage. We discuss one gene in particular (encoding 1-phosphoribosyl-5-pyrophosphate synthetase) that displays an unusually high rate of intron gain in multiple lineages. It has been recognized that introns are biased towards the 5′ ends of genes in intron-poor genomes but are evenly distributed in intron-rich genomes. Current models attribute this bias to 3′ intron loss through a poly-adenosine-primed reverse transcription mechanism. Contrary to standard models, we find no increased frequency of intron loss toward the 3′ ends of genes. Thus, recent intron dynamics do not support a model whereby 5′ intron positional bias is generated solely by 3′-biased intron loss

    Process optimization for polishing large aspheric mirrors

    Get PDF
    ABSTRACT Large telescope mirrors have stringent requirements for surface irregularity on all spatial scales. Large scale errors, typically represented with Zernike polynomials, are relatively easy to control. Errors with smaller spatial scale can be more difficult because the specifications are tighter. Small scale errors are controlled with a combination of natural smoothing from large tools and directed figuring with precisely controlled small tools. The optimization of the complete process builds on the quantitative understanding of natural smoothing, convergence of small tool polishing, and confidence in the surface measurements. This paper provides parametric models for smoothing and directed figuring that can be used to optimize the manufacturing process
    corecore