91 research outputs found

    Highway to heaven: mammary gland development and differentiation

    Get PDF
    In recent years, the mammary gland epithelium has been shown to be a mixture of differentiated cell populations in a hierarchical relationship with their stem and progenitor cells. However, the mechanisms that regulate their cellular differentiation processes are still unclear. The identification of genes that govern stem and progenitor cell expansion, or that determine daughter cell fate, will be of crucial interest for understanding breast cancer diversity and, ultimately, improving treatment. Two recent analyses have identified some of the key genes that regulate these processes, lighting up the highway to normal mammary gland development

    Lactation Defect in a Widely Used MMTV-Cre Transgenic Line of Mice

    Get PDF
    MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines.To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development.The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the controls did not include mice expressing only Cre recombinase

    Keratin 6 is not essential for mammary gland development

    Get PDF
    INTRODUCTION: Keratin 6 (K6) has previously been identified as a marker of early mammary gland development and has also been proposed to be a marker of mammary gland progenitor cells. However, the function of K6 in the mammary gland was not known, so we examined the expression pattern of the protein during both embryonic and postnatal mammary development, as well as the mammary gland phenotype of mice that were null for both K6a and K6b isoforms. METHOD: Immunostaining was performed to determine the expression pattern of K6a throughout mammary gland development, from the embryonic mammary bud to lactation. Double immunofluorescence was used to co-localize K6 with known markers of mammary gland development. Wild-type and K6ab-null mammary tissues were transplanted into the cleared fat pads of nude mice and the outgrowths were analyzed for morphology by whole-mount staining and for markers of mammary epithelium by immunostaining. Finally, progesterone receptor (PR) and bromodeoxyuridine co-localization was quantified by double immunofluorescence in wild-type and K6ab-null mammary outgrowths. RESULTS: Here we report that K6 is expressed earlier than described previously, by embryonic day 16.5. K6a is the predominant isoform expressed in the mammary gland, localized in the body cells and luminal epithelial cells but not in the cap cells or myoepithelial cells. Co-localization studies showed that most K6a-positive cells express steroid receptors but do not proliferate. When both the K6a and K6b genes are deleted, mammary gland development appears normal, with similar expression of most molecular markers examined in both the pubertal gland and the mature gland. Loss of K6a and K6b, however, leads to an increase in the number of steroid-receptor-positive cells, and increased co-localization of steroid receptor expression and proliferation was observed. CONCLUSION: Although K6a was not essential for mammary gland development, loss of both K6a and K6b resulted in an increase in PR-positive mammary epithelial cells and decreased proliferation after exposure to steroid hormones. There was also increased co-localization of PR and bromodeoxyuridine, suggesting alterations in patterning events important for normal lobuloalveolar development

    Notch Signaling Regulates Late-Stage Epidermal Differentiation and Maintains Postnatal Hair Cycle Homeostasis

    Get PDF
    Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells

    Cell Hierarchy and Lineage Commitment in the Bovine Mammary Gland

    Get PDF
    The bovine mammary gland is a favorable organ for studying mammary cell hierarchy due to its robust milk-production capabilities that reflect the adaptation of its cell populations to extensive expansion and differentiation. It also shares basic characteristics with the human breast, and identification of its cell composition may broaden our understanding of the diversity in cell hierarchy among mammals. Here, Lin− epithelial cells were sorted according to expression of CD24 and CD49f into four populations: CD24medCD49fpos (putative stem cells, puStm), CD24negCD49fpos (Basal), CD24highCD49fneg (putative progenitors, puPgt) and CD24medCD49fneg (luminal, Lum). These populations maintained differential gene expression of lineage markers and markers of stem cells and luminal progenitors. Of note was the high expression of Stat5a in the puPgt cells, and of Notch1, Delta1, Jagged1 and Hey1 in the puStm and Basal populations. Cultured puStm and Basal cells formed lineage-restricted basal or luminal clones and after re-sorting, colonies that preserved a duct-like alignment of epithelial layers. In contrast, puPgt and Lum cells generated only luminal clones and unorganized colonies. Under non-adherent culture conditions, the puPgt and puStm populations generated significantly more floating colonies. The increase in cell number during culture provides a measure of propagation potential, which was highest for the puStm cells. Taken together, these analyses position puStm cells at the top of the cell hierarchy and denote the presence of both bi-potent and luminally restricted progenitors. In addition, a population of differentiated luminal cells was marked. Finally, combining ALDH activity with cell-surface marker analyses defined a small subpopulation that is potentially stem cell- enriched

    Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV

    Get PDF
    The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects

    Measurement of indirect CP asymmetries in D 0 → K − K + and D 0 → π − π + decays using semileptonic B decays

    Get PDF
    No abstract available

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF
    Decays of beauty baryons to the D0ph− and Λ+ch− final states (where h indicates a pion or a kaon) are studied using a data sample of pp collisions, corresponding to an integrated luminosity of 1.0  fb−1, collected by the LHCb detector. The Cabibbo-suppressed decays Λ0b→D0pK− and Λ0b→Λ+cK− are observed, and their branching fractions are measured with respect to the decays Λ0b→D0pπ− and Λ0b→Λ+cπ−. In addition, the first observation is reported of the decay of the neutral beauty-strange baryon Ξ0b to the D0pK− final state, and a measurement of the Ξ0b mass is performed. Evidence of the Ξ0b→Λ+cK− decay is also reported
    corecore