119 research outputs found

    Research and data systems to promote equal access to postacute rehabilitation

    Get PDF

    Steps towards online monitoring systems and interoperability

    Get PDF
    In the health area, there is, on a daily basis, an enormous amount of data being produced and disseminated. The fast-growing amount of collected data and the rich knowledge, possibly life-saving, that could be extracted from these data has demanded the search of new ways to ensure the reliability and availability of the information with an emphasis on the efficient use of information technology tools. Although the main focus of the information systems is the health professionals who contact directly with the patient, it is also imperative to have tools for the background of the health units (information services, managers of systems, etc.). The main purpose of this work is the development of an innovative and interactive web platform for the daily monitoring of the web services activities of a Portuguese hospital, Centro Hospitalar do Porto (CHP). This platform is a web application developed in React that aims to ensure the correct functioning of the web services, that are responsible for numerous tasks within the hospital environment, and which failure could result in disastrous consequences, both for the health institution and for the patients. The development of the web application followed the six stages of the Design Science Research (DSR) methodology and was submitted to the Strengths Weaknesses Opportunities and Threats (SWOT) analysis, which results were considered optimistic.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/201

    The challenges of implementing packaged hospital electronic prescribing and medicine administration systems in UK hospitals: premature purchase of immature solutions?

    Get PDF
    The UK National Health Service is making major efforts to implement Hospital Electronic Prescribing and Medicine Administration (HEPMA) to improve patient safety and quality of care. Substantial public investments have attracted a wide range of UK and overseas suppliers offering Commercial-Off –The-Shelf (COTS) solutions. A lack of (UK) implementation experience and weak supplier-user relationships are reflected in systems with limited configurability, poorly matched to the needs and practices of English hospitals. This situation echoes the history of comparable corporate information infrastructures - Enterprise Resource Planning systems - in the 1980s/1990s. UK government intervention prompted a similar swarming of immature, often unfinished, products into the market. This resulted, in both cases, in protracted and difficult implementation processes as vendors and adopters struggled to get the systems to work and match the circumstances of the adopting organisations. An analysis of the influence of the Installed Base on Information Infrastructures should explore how the evolution of COTS solutions is conditioned by the structure of adopter and vendor ‘communities’

    Out-of-pocket expenditures for pharmaceuticals: lessons from the Austrian household budget survey

    Get PDF
    BACKGROUND: Paying pharmaceuticals out-of-pocket is an important source of financing pharmaceutical consumption. Only limited empirical knowledge is available on the determinants of these expenditures. OBJECTIVES: In this paper we analyze which characteristics of private households influence out-of-pocket pharmaceutical expenditure (OOPPE) in Austria. DESIGN & METHODS: We use cross-sectional information on OOPPE and on household characteristics provided by the Austrian household budget survey 2009/10. We split pharmaceutical expenditures into the two components prescription fees and over-the-counter (OTC) expenditures. To adjust for the specific characteristics of the data we compare different econometric approaches: two-part model, hurdle model, generalized linear model, zero-inflated negative binomial regression model. FINDINGS: The finally selected econometric approaches give a quite consistent picture. The probability of expenditures of both types is strongly influenced by the household structure. It increases with age, doctoral visits and the presence of a female householder. The education level and income only increase the probability of OTC-pharmaceuticals. The level of OTC-expenditures remains widely unexplained while the household structure and age influences the expenditures for prescription fees. Insurance characteristics of private households either private or public play a minor role in explaining the expenditure levels in all specifications. This refers to a homogenous and comprehensive provision of pharmaceuticals in the public part of the Austrian health care system. CONCLUSIONS: The paper gives useful insights into the determinants of pharmaceutical expenditures of private households and supplements the previous research which focuses on the individual level

    Taxonomy of delays in the implementation of hospital computerized physician order entry and clinical decision support systems for prescribing:a longitudinal qualitative study

    Get PDF
    BACKGROUND: Implementation delays are common in health information technology (HIT) projects. In this paper, we sought to explore the reasons for delays in implementing major hospital-based HIT, through studying computerized physician order entry (CPOE) and clinical decision support (CDS) systems for prescribing and to develop a provisional taxonomy of causes of implementation delays. METHODS: We undertook a series of longitudinal, qualitative case studies to investigate the implementation and adoption of CPOE and CDS systems for prescribing in hospitals in the U.K. We used a combination of semi-structured interviews from six case study sites and two whole day expert roundtable discussions to collect data. Interviews were carried out with users, implementers and suppliers of CPOE/CDS systems. We used thematic analysis to examine the results, drawing on perspectives surrounding the biography of artefacts. RESULTS: We identified 15 major factors contributing to delays in implementation of CPOE and CDS systems. These were then categorized in a two-by-two delay classification matrix: one axis distinguishing tactical versus unintended causes of delay, and the second axis illustrating internal i.e., (the adopting hospital) versus external (i.e., suppliers, other hospitals, policymakers) related causes. CONCLUSIONS: Our taxonomy of delays in HIT implementation should enable system developers, implementers and policymakers to better plan and manage future implementations. More detailed planning at the outset, considering long-term strategies, sustained user engagement, and phased implementation approaches appeared to reduce the risks of delays. It should however be noted that whilst some delays are likely to be preventable, other delays cannot be easily avoided and taking steps to minimize these may negatively affect the longer-term use of the system

    Pharmaceutical Cost Management in an Ambulatory Setting Using a Risk Adjustment Tool

    Get PDF
    © 2014 Vivas-Consuelo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background Pharmaceutical expenditure is undergoing very high growth, and accounts for 30% of overall healthcare expenditure in Spain. In this paper we present a prediction model for primary health care pharmaceutical expenditure based on Clinical Risk Groups (CRG), a system that classifies individuals into mutually exclusive categories and assigns each person to a severity level if s/he has a chronic health condition. This model may be used to draw up budgets and control health spending. Methods Descriptive study, cross-sectional. The study used a database of 4,700,000 population, with the following information: age, gender, assigned CRG group, chronic conditions and pharmaceutical expenditure. The predictive model for pharmaceutical expenditure was developed using CRG with 9 core groups and estimated by means of ordinary least squares (OLS). The weights obtained in the regression model were used to establish a case mix system to assign a prospective budget to health districts. Results The risk adjustment tool proved to have an acceptable level of prediction (R2 0.55) to explain pharmaceutical expenditure. Significant differences were observed between the predictive budget using the model developed and real spending in some health districts. For evaluation of pharmaceutical spending of pediatricians, other models have to be established. Conclusion The model is a valid tool to implement rational measures of cost containment in pharmaceutical expenditure, though it requires specific weights to adjust and forecast budgets.This study was financed by a grant from the Fondo de Investigaciones de la Seguridad Social Instituto de Salud Carlos III, the Spanish Ministry of Health (FIS PI12/0037). The authors would like to thank members (Juan Bru and Inma Saurf) of the Pharmacoeconomics Office of the Valencian Health Department. The opinions expressed in this paper are those of the authors and do not necessary reflect those of the afore-named. Any errors are the authors' responsibility. We would also like to thank John Wright for the English editing.Vivas Consuelo, DJJ.; Usó Talamantes, R.; Guadalajara Olmeda, MN.; Trillo Mata, JL.; Sancho Mestre, C.; Buigues Pastor, L. (2014). Pharmaceutical Cost Management in an Ambulatory Setting Using a Risk Adjustment Tool. BMC Health Services Research. 14:462-472. https://doi.org/10.1186/1472-6963-14-462S46247214Hux JE, Naylor CD: Drug prices and third party payment: do they influence medication selection?. Pharmacoecon. 1994, 5 (4): 343-350. 10.2165/00019053-199405040-00008.Sicras-Mainar A, Serrat-Tarres J, Navarro-Artieda R, Llopart-Lopez J: [Prospects of adjusted clinical groups (ACG’s) in capitated payment risk adjustment]. Rev Esp Salud Publica. 2006, 80 (1): 55-65. 10.1590/S1135-57272006000100006.Mossey JM, Roos LL: Using insurance claims to measure health-status - the illness scale. J Chronic Dis. 1987, 40: S41-S50.Newhouse JP, Manning WG, Keeler EB, Sloss EM: Adjusting capitation rates using objective health measures and prior utilization. Health Care Financ Rev. 1989, 10 (3): 41-54.Ash A, Porell F, Gruenberg L, Sawitz E, Beiser A: Adjusting Medicare capitation payments using prior hospitalization data. Health Care Financ Rev. 1989, 10 (4): 17-29.Ellis RP, Pope GC, Iezzoni L, Ayanian JZ, Bates DW, Burstin H, Ash AS: Diagnosis-based risk adjustment for Medicare capitation payments. Health Care Financ Rev. 1996, 17 (3): 101-128.Pope GC, Kautter J, Ellis RP, Ash AS, Ayanian JZ, Lezzoni LI, Ingber MJ, Levy JM, Robst J: Risk adjustment of Medicare capitation payments using the CMS-HCC model. Health Care Financ Rev. 2004, 25 (4): 119-141.Starfield B, Weiner J, Mumford L, Steinwachs D: Ambulatory care groups: a categorization of diagnoses for research and management. Health Serv Res. 1991, 26 (1): 53-74.Weiner JP, Starfield BH, Steinwachs DM, Mumford LM: Development and application of a population-oriented measure of ambulatory care case-mix. Med Care. 1991, 29 (5): 452-472. 10.1097/00005650-199105000-00006.Hughes JS, Averill RF, Eisenhandler J, Goldfield NI, Muldoon J, Neff JM, Gay JC: Clinical Risk Groups (CRGs): a classification system for risk-adjusted capitation-based payment and health care management. Med Care. 2004, 42 (1): 81-90. 10.1097/01.mlr.0000102367.93252.70.Berlinguet M, Preyra C, Dean S: Comparing the Value of Three Main Diagnostic-Based Risk-Adjustment Systems (DBRAS). 2005, Ottawa, Ontario: Edited by Foundation CHSRVon Korff M, Wagner EH, Saunders K: A chronic disease score from automated pharmacy data. J Clin Epidemiol. 1992, 45 (2): 197-203. 10.1016/0895-4356(92)90016-G.Malone DC, Billups SJ, Valuck RJ, Carter BL: Development of a chronic disease indicator score using a Veterans Affairs Medical Center medication database. IMPROVE Investigators. J Clin Epidemiol. 1999, 52 (6): 551-557. 10.1016/S0895-4356(99)00029-3.Clark DO, Von Korff M, Saunders K, Baluch WM, Simon GE: A chronic disease score with empirically derived weights. Med Care. 1995, 33 (8): 783-795. 10.1097/00005650-199508000-00004.Lamers LM: Pharmacy costs groups: a risk-adjuster for capitation payments based on the use of prescribed drugs. Med Care. 1999, 37 (8): 824-830. 10.1097/00005650-199908000-00012.Lamers LM: Health-based risk adjustment: is inpatient and outpatient diagnostic information sufficient?. Inquiry. 2001, 38 (4): 423-431.Lamers LM, van Vliet RC: The Pharmacy-based Cost Group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. Health Policy. 2004, 68 (1): 113-121. 10.1016/j.healthpol.2003.09.001.Lamers LM, Vliet RC: Health-based risk adjustment Improving the pharmacy-based cost group model to reduce gaming possibilities. Eur J Health Econ. 2003, 4 (2): 107-114. 10.1007/s10198-002-0159-9.Johnson RE, Hornbrook MC, Nichols GA: Replicating the chronic disease score (CDS) from automated pharmacy data. J Clin Epidemiol. 1994, 47 (10): 1191-1199. 10.1016/0895-4356(94)90106-6.Zhao Y, Ellis RP, Ash AS, Calabrese D, Ayanian JZ, Slaughter JP, Weyuker L, Bowen B: Measuring population health risks using inpatient diagnoses and outpatient pharmacy data. Health Serv Res. 2001, 36 (6 Pt 2): 180-193.Stam PJ, van Vliet RC, van de Ven WP: Diagnostic, pharmacy-based, and self-reported health measures in risk equalization models. Med Care. 2010, 48 (5): 448-457. 10.1097/MLR.0b013e3181d559b4.Hanley GE, Morgan S, Reid RJ: Explaining prescription drug use and expenditures using the adjusted clinical groups case-mix system in the population of British Columbia, Canada. Can Med Care. 2010, 48 (5): 402-408. 10.1097/MLR.0b013e3181ca3d5d.Aguado A, Guino E, Mukherjee B, Sicras A, Serrat J, Acedo M, Ferro JJ, Moreno V: Variability in prescription drug expenditures explained by adjusted clinical groups (ACG) case-mix: a cross-sectional study of patient electronic records in primary care. BMC Health Serv Res. 2008, 8 (4): 11.Garcia-Goni M, Ibern P: Predictability of drug expenditures: An application using morbidity data. Health Econ. 2008, 17 (1): 119-126. 10.1002/hec.1238.Garcia-Goni M, Ibern P, Inoriza JM: Hybrid risk adjustment for pharmaceutical benefits. Eur J Health Econ. 2009, 10 (3): 299-308. 10.1007/s10198-008-0133-2.Vivas-Consuelo D, Uso-Talamantes R, Trillo-Mata JL, Caballer-Tarazona M, Barrachina-Martinez I, Buigues-Pastor L: Predictability of pharmaceutical spending in primary health services using Clinical Risk Groups. Health Policy. 2014, 116 (2–3): 188-195.Robst J, Levy JM, Ingber MJ: Diagnosis-based risk adjustment for medicare prescription drug plan payments. Health Care Financ Rev. 2007, 28 (4): 15-30.Zhao Y, Ash AS, Ellis RP, Ayanian JZ, Pope GC, Bowen B, Weyuker L: Predicting pharmacy costs and other medical costs using diagnoses and drug claims. Med Care. 2005, 43 (1): 34-43.Buchner F, Goepffarth D, Wasem J: The new risk adjustment formula in Germany: implementation and first experiences. Health Policy. 2013, 109 (3): 253-262. 10.1016/j.healthpol.2012.12.001.Inoriza JM, Coderch J, Carreras M, Vall-Llosera L, Garcia-Goni M, Lisbona JM, Ibern P: [Measurement of morbidity attended in an integrated health care organization]. Gac Sanit. 2009, 23 (1): 29-37. 10.1016/j.gaceta.2008.02.003.Orueta JF, Mateos Del Pino M, Barrio Beraza I, Nuno Solinis R, Cuadrado Zubizarreta M, Sola Sarabia C: [Stratification of the population in the Basque Country: results in the first year of implementation.]. Aten Primaria. 2012, 45 (1): 54-60.Sicras-Mainar A, Navarro-Artieda R: [Validating the Adjusted Clinical Groups [ACG] case-mix system in a Spanish population setting: a multicenter study]. Gac Sanit. 2009, 23 (3): 228-231. 10.1016/j.gaceta.2008.04.005.Omar RZ, O’Sullivan C, Petersen I, Islam A, Majeed A: A model based on age, sex, and morbidity to explain variation in UK general practice prescribing: cohort study. BMJ. 2008, 337: a238-10.1136/bmj.a238.Caballer-Tarazona M, Buigues-Pastor L, Saurí- Ferrer I, Uso-Talamantes R, Trillo-Mata JL: [A standardized amount indicator by equivalent patient to control outpatient pharmaceutical expenditure, Spain]. Rev Esp Salud Publica. 2011, 86: 371-380.De la Poza-Plaza E, Barrachina I, Trillo-Mata J, Uso-Talamantes R: Sistema de Prescripción y dispensación electrónica en la Agencia Valenciana de Salud. El Prof de la Inf. 2011, 20: 9.Vivas D, Guadalajara N, Barrachina I, Trillo JL, Uso R, De-la-Poza E: Explaining primary healthcare pharmacy expenditure using classification of medications for chronic conditions. Health Policy. 2011, 103 (1): 9-15. 10.1016/j.healthpol.2011.08.014.Buntin MB, Zaslavsky AM: Too much ado about two-part models and transformation? Comparing methods of modeling Medicare expenditures. J Health Econ. 2004, 23 (3): 525-542. 10.1016/j.jhealeco.2003.10.005.Duan N: Smearing estimate - a nonparametric retransformation method. J Am Stat Assoc. 1983, 78 (383): 605-610. 10.1080/01621459.1983.10478017.Calderon-Larranaga A, Abrams C, Poblador-Plou B, Weiner JP, Prados-Torres A: Applying diagnosis and pharmacy-based risk models to predict pharmacy use in Aragon, Spain: the impact of a local calibration. BMC Health Serv Res. 2010, 10: 22-10.1186/1472-6963-10-22

    Understanding key factors affecting electronic medical record implementation:a sociotechnical approach

    Get PDF
    Recent health care policies have supported the adoption of Information and Communication Technologies (ICT) but examples of failed ICT projects in this sector have highlighted the need for a greater understanding of the processes used to implement such innovations in complex organizations. This study examined the interaction of sociological and technological factors in the implementation of an Electronic Medical Record (EMR) system by a major national hospital. It aimed to obtain insights for managers planning such projects in the future and to examine the usefulness of Actor Network Theory (ANT) as a research tool in this context
    corecore