75 research outputs found

    Expanding Housing Typology, Increasing Affordability: A Flexible Density Program for the City of San Luis Obispo

    Get PDF
    The City of San Luis Obispo faces an ongoing housing production shortage and housing affordability crisis that has been afflicting jurisdictions across State of California for a prolonged period of time. The City faces many of the same housing availability and affordability challenges as the rest of the State, but also has distinct characteristics that necessitate unique policies and strategies, such as the concurrent presence of both a large student and young professional population as well as a wealthy retirement community, which drastically drives up housing prices and demand. The Flexible Density Program is proposed by the City of San Luis Obispo as a potential strategy to facilitate growth of the City’s overall housing stock, incentivize development of smaller and potentially more affordable residential units, and provide a viable housing option for young professionals seeking to live in the City’s downtown. The City’s envisioned program approach allows flexibility in residential density limits to certain mixed-use residential projects in order to stimulate production of more, smaller, residential units in the Downtown and Upper Monterey areas of the City. This report describes the initial development of the proposed Flexible Density Program as follows. First, the report reviews the ongoing housing shortage and its impact on the City and the local demographic and housing context to identify community housing needs. Next, the report refers to relevant literature and research on small residential units as a housing typology, provides examples of inventive city development programs and mixed-use residential projects featuring small units. Research findings are used to develop the structure of the Flexible Density Program in alignment with the identified community housing needs. This culminating draft ordinance specifies the parameters of the program and imbeds the program in the City’s Zoning Regulations. Current conditions of the Downtown and Upper Monterey areas of the City are then analyzed to identify potential development constraints and evaluate the potential residential capacity of these areas to accommodate small residential units. The results of the residential capacity analysis indicate that the Downtown and Upper Monterey areas have a significant capacity to accommodate additional smaller residential units in addition to those that are able to be developed under standard maximum residential density limits. These results validate that the Flexible Density Program has the potential to help grow the City’s housing stock as well as to provide a unique housing typology option to community residents in these areas

    Biochemical characterization of mutants in the active site residues of the beta-galactosidase enzyme of Bacillus circulans ATCC 31382

    Get PDF
    The Bacillus circulans ATCC 31382 beta-galactosidase (BgaD) is a retaining-type glycosidase of glycoside hydrolase family 2 (GH2). Its commercial enzyme preparation, Biolacta N5, is used for commercial-scale production of galacto-oligosaccharides (GOS). The BgaD active site and catalytic amino acid residues have not been studied. Using bioinformatic routines we identified two putative catalytic glutamates and two highly conserved active site histidines. The site-directed mutants E447N, E532Q, and H345F, H379F had lost (almost) all catalytic activity. This confirmed their essential role in catalysis, as general acid/base catalyst (E447) and nucleophile (E532), and as transition state stabilizers (H345, H379), respectively. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.</p

    Metal ion responsive adhesion of vesicles by conformational switching of a non-covalent linker

    Get PDF
    This contribution describes the metal ion responsive adhesion of vesicles induced by a conformational switch of a non-covalent linker molecule. A p-tert-butylbenzyl dimer with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was used as a non-covalent linker, which induces aggregation and adhesion (but not fusion) of host bilayer vesicles composed of amphiphilic beta-cyclodextrins by the formation of hydrophobic inclusion complexes. The aggregation and adhesion of the vesicles in dilute aqueous solution was confirmed by isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600), dynamic light scattering (DLS), zeta-potential measurements, cryogenic transmission electron microscopy (cryo-TEM) and fluorescence spectroscopy. However, in the presence of a divalent metal ion like Cu(2+), the tetra-amine linker molecule forms a stable metal coordination complex and dramatically switches its conformation from linear to bent, which results in the dissociation of intervesicular complexes, and leads to the dispersion of vesicle clusters. This process is reversible in the presence of a strong metal ion chelator, such as EDTA, that scavenges the Cu(2+) ion complexed by the linker. The linker molecule regains its linear conformation and triggers the reaggregation of the vesicles. In contrast, conformational switching was inhibited by introducing a rigid N,N'-bis(3-aminopropyl)piperazine spacer in the non-covalent linker molecule and vesicles do not aggregate in the presence of a cyclic guest that can only bind intravesicularly. Thus, a metal ion regulated molecular switch can control the aggregation state of an organic colloidal solution.</p

    The effect of secondary electrons on radiolysis as observed by in liquid TEM: The role of window material and electrical bias

    Get PDF
    The effect of window material on electron beam induced phenomena in liquid phase electron microscopy (LPEM) is an interesting yet under-explored subject. We have studied the differences of electron beam induced gold nanoparticle (AuNP) growth subject to three encapsulation materials: Silicon Nitride (Si3N4), carbon and formvar. We find Si3N4 liquid cells (LCs) to result in significantly higher AuNP growth yield as compared to LCs employing the other two materials. In all cases, an electrical bias of the entire LC structures significantly affected particle growth. We demonstrate an inverse correlation of the AuNP growth rate with secondary electron (SE) emission from the windows. We attribute these differences at least in part to variations in SE emission dynamics, which is seen as a combination of material and bias dependent SE escape flux (SEEF) and SE return flux (SERF). Furthermore, our model predictions qualitatively match electrochemistry expectations

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Myosin Vc Interacts with Rab32 and Rab38 Proteins and Works in the Biogenesis and Secretion of Melanosomes

    Get PDF
    Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion

    BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers.

    Get PDF
    Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin. Melanosomes and other lysosome-related organelles obtain cargoes from early endosomes, but the fusion machinery involved and its recycling pathway are unknown. Here, we show that the v-SNARE VAMP7 mediates fusion of melanosomes with tubular transport carriers that also carry the cargo protein TYRP1 and that require BLOC-1 for their formation. Using live-cell imaging, we identify a pathway for VAMP7 recycling from melanosomes that employs distinct tubular carriers. The recycling carriers also harbor the VAMP7-binding scaffold protein VARP and the tissue-restricted Rab GTPase RAB38. Recycling carrier formation is dependent on the RAB38 exchange factor BLOC-3. Our data suggest that VAMP7 mediates fusion of BLOC-1-dependent transport carriers with melanosomes, illuminate SNARE recycling from melanosomes as a critical BLOC-3-dependent step, and likely explain the distinct hypopigmentation phenotypes associated with BLOC-1 and BLOC-3 deficiency in Hermansky-Pudlak syndrome variants.This work was supported by grants from the National Institutes of Health, National Eye Institute (R01 EY015625, to M.S. Marks and G.  Raposo), National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR048155, to M.S. Marks, and F32 AR062476, to M.K. Dennis), National Institute of General Medical Sciences (R01 GM108807, to M.S. Marks); Fondation pour la Recherche Médicale (to T.  Galli); the UK Medical Research Council (G0900113, to J.P. Luzio); and the Wellcome Trust (108429, to E.V. Sviderskaya and D.C. Bennett). This work was also supported by a Canadian Institutes of Health Research Fellowship (to G.G.  Hesketh) and a Fondation pour la Recherche Médicale grant from Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Curie, and Fondation pour la Recherche Médicale (DEQ20140329491 Team label, to G. Raposo).This is the final version of the article. It first appeared from Rockefeller University Press via http://dx.doi.org/10.1083/jcb.20160509

    Epstein-Barr Virus LMP2A Reduces Hyperactivation Induced by LMP1 to Restore Normal B Cell Phenotype in Transgenic Mice

    Get PDF
    Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors
    • …
    corecore