74 research outputs found

    Redox fluctuations, trace metal enrichment and phosphogenesis in the ~2.0 Ga Zaonega Formation

    Get PDF
    The ~2.0 Ga Zaonega Formation (ZF) holds one of the oldest phosphorites in the geologic record, reaching >15% P2O5. Understanding the depositional conditions that enabled sedimentary phosphorus enrichment in this unit will thus help us to interpret the significance of the temporal distribution of phosphorites in Earth’s early history. Here we use an array of major and trace element data to constrain the redox conditions in the water column and extent of basinal restriction during deposition of the ZF. We also present new selenium (Se) abundance and isotopic data to provide firmer constraints on fluctuations across high redox potentials, which might be critical for phosphogenesis. We find that Se isotope ratios shift over a range of ~3‰ in the ZF, with the earliest stratigraphically-resolved negative Se isotope excursion in the geologic record, implying at least temporarily suboxic waters in the basin. Furthermore, we find that redox-sensitive element (RSE) enrichments coincide with episodes of P enrichment, thereby implicating a common set of environmental controls on these processes. Together, our dataset implies deposition under a predominantly anoxic water column with periodic fluctuations to more oxidizing conditions because of connections to a large oxic reservoir containing Se oxyanions (and other RSE’s, as well as sulfate) in the open ocean. This is broadly consistent with the depositional setting of many modern and recent phosphorites, thereby tying these ancient deposits to a common depositional mechanism. In light of these data, we propose that the broader prevalence of phosphogenesis in the Paleoproterozoic Era was driven by growth of the seawater oxidant reservoir (namely sulfate), thus enabling diagenetic apatite precipitation in basins with high rates of export production, particularly by facilitating the activity of sulfide-oxidizing bacteria. This suggests that the muted authigenic P burial observed in marginal, marine siliciclastic sedimentary rocks during other intervals of the Precambrian was not merely a result of low dissolved P levels in the global deep ocean, but also was influenced by sulfate scarcity and strongly reducing bottom-water conditions

    The evolution of Earth’s biogeochemical nitrogen cycle

    Get PDF
    Financial support during the compilation of this manuscript was provided by the NASA postdoctoral program (EES), the NSF Graduate Research Fellowship Program (MAK), the Agouron Institute (MCK, RB) and the NSF FESD program (grant number 1338810, subcontract to RB).Nitrogen is an essential nutrient for all life on Earth and it acts as a major control on biological productivity in the modern ocean. Accurate reconstructions of the evolution of life over the course of the last four billion years therefore demand a better understanding of nitrogen bioavailability and speciation through time. The biogeochemical nitrogen cycle has evidently been closely tied to the redox state of the ocean and atmosphere. Multiple lines of evidence indicate that the Earth’s surface has passed in a non-linear fashion from an anoxic state in the Hadean to an oxic state in the later Phanerozoic. It is therefore likely that the nitrogen cycle has changed markedly over time, with potentially severe implications for the productivity and evolution of the biosphere. Here we compile nitrogen isotope data from the literature and review our current understanding of the evolution of the nitrogen cycle, with particular emphasis on the Precambrian. Combined with recent work on redox conditions, trace metal availability, sulfur and iron cycling on the early Earth, we then use the nitrogen isotope record as a platform to test existing and new hypotheses about biogeochemical pathways that may have controlled nitrogen availability through time. Among other things, we conclude that (a) abiotic nitrogen sources were likely insufficient to sustain a large biosphere, thus favoring an early origin of biological N2 fixation, (b) evidence of nitrate in the Neoarchean and Paleoproterozoic confirm current views of increasing surface oxygen levels at those times, (c) abundant ferrous iron and sulfide in the mid-Precambrian ocean may have affected the speciation and size of the fixed nitrogen reservoir, and (d) nitrate availability alone was not a major driver of eukaryotic evolution.PostprintPeer reviewe

    Spatial and temporal trends in Precambrian nitrogen cycling: a Mesoproterozoic offshore nitrate minimum

    Get PDF
    We thank NSF EAR FESD grant #1338810 (RB), NASA grant NNX16AI37G (RB), the Agouron Institute (RB), the NASA Astrobiology Institute’s Virtual Planetary Laboratory (RB), the NSF Graduate Research Fellowship Program (MAK), and the Department of Earth and Space Sciences, University of Washington Goodspeed Geology Fellowship (MCK), Misch Fellowship (MCK), and the Kenneth C. Robbins Field Study Fellowship (2014, MCK) for funding.Fixed nitrogen is an essential nutrient for eukaryotes. As N2 fixation and assimilation of nitrate are catalyzed by metalloenzymes, it has been hypothesized that in Mesoproterozoic oceans nitrate was limited in offshore environments by low trace metal concentrations and high rates of denitrification in anoxic and episodically euxinic deep water masses, restricting eukaryotes to near-shore environments and limiting their evolutionary innovation. To date this hypothesis has only been tested in the Belt Supergroup (∼1.4 Ga), with results that support an onshore-offshore nitrate gradient as a potential control on eukaryote ecology. Here we present bulk nitrogen and organic carbon isotopic data from non-isochronous cross-basinal facies across the Bangemall (∼1.5 Ga) and the Roper (∼1.4-1.5 Ga) basins to better understand the extent and variability of onshore-offshore nitrogen isotope gradients in the Mesoproterozoic. Both basins show an average ∼1-2‰ enrichment in δ15Nbulk from deep to shallow facies, with a maximum range from -1‰ offshore to +7.5‰ onshore. Unlike the Belt basin, the Bangemall and Roper basins show some offshore δ15Nbulk values that are enriched beyond the isotopic range induced by biological N2 fixation alone. This suggests a mixture of aerobic and anaerobic metabolisms offshore. In shallow waters, where δ15Nbulk enrichment peaks, an aerobic nitrogen cycle was evidently operating vigorously. Even though isotopic signatures of aerobic nitrogen cycling are seen in all parts of the Bangemall and Roper basins, our data are consistent with a lateral gradient in nitrate availability within the photic zone, with higher concentrations in near-shore environments than offshore. The variability in δ15Nbulk values in each depositional environment and the consistently low δ15N values from Mesoproterozoic units compared to the Paleoproterozoic and Neoproterozoic suggest that nitrate concentrations in the global ocean were likely low. This trend is now seen in all three Mesoproterozoic basins so far examined, and contrasts with the Paleoproterozoic and Neoproterozoic where nearly all δ15Nbulk data plot above the N2 fixation window. Thus, we propose that the Mesoproterozoic ocean was characterized by a nitrate minimum between the Paleo- and Neoproterozoic, with the lowest concentrations in offshore environments. This inference is consistent with a Mesoproterozoic O2 decline following a temporary Paleoproterozoic O2 peak, and it further supports the idea that nitrate limitation offshore may have contributed to the restriction of photosynthetic eukaryotes to near-shore environments, delaying their rise to ecological dominance until the Neoproterozoic Era.PostprintPeer reviewe

    Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks

    Get PDF
    This work was financially supported by a NASA Exobiology grant to RB (# NNX16AI37G), an NSF graduate student research fellowship to JZ, and a NASA postdoctoral fellowship to EES.The last decade has seen a steady rise in the number of publications on nitrogen isotopes in sedimentary rocks, which have become an established tool for investigating the evolution of life and environmental conditions. Nitrogen is contained in sedimentary rocks in two different phases: bound to kerogen or substituted in potassic minerals (mostly K-bearing phyllosilicates and feldspars). Isotopic measurements and interpretations typically focus either on kerogen extracts alone or on bulk rocks that include both phases. The community is split about which sample type more accurately captures the original composition of the biomass. To address this question, we combined nitrogen isotopes and carbon-to-nitrogen ratios with carbon-to-hydrogen ratios which act as an independent proxy for metamorphic alteration. Our results reveal that metamorphism drives kerogen-bound nitrogen isotopically lighter while silicate-bound nitrogen becomes heavier. For rocks up to greenschist facies, the isotopic effect of this internal partitioning (up to 3-4‰) is larger than the isotopic effect of metamorphic nitrogen loss from the system (up to 1-2‰). The opposite may be true for higher metamorphic grades. We conclude that for low-grade sedimentary rocks with more than 60% of their total nitrogen residing in the silicate phase the primary isotopic composition of the biomass is best approximated by the bulk rock measurement, whereas for high-grade rocks the kerogen extract may be the more accurate proxy. The isotopic difference between nitrogen phases can thus serve as a rough indicator of the degree of metamorphic alteration.PostprintPeer reviewe

    Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen

    Get PDF
    Funding: This study was supported by National Aeronautics and Space Administration Exobiology Grant NNX16AI37G (R.B.) and by the MacArthur Professorship (J.D.B.) at the University of Michigan. M.A.K. acknowledges support from an Agouron Institute postdoctoral fellowship.Earth’s early atmosphere witnessed multiple transient episodes of oxygenation before the Great Oxidation Event 2.4 billion years ago (Ga) [e.g., A. D. Anbar et al., Science 317, 1903–1906 (2007); M. C. Koehler, R. Buick, M. E. Barley, Precambrian Res. 320, 281–290 (2019)], but the triggers for these short-lived events are so far unknown. Here, we use mercury (Hg) abundance and stable isotope composition to investigate atmospheric evolution and its driving mechanisms across the well-studied “whiff” of O2 recorded in the ∼2.5-Ga Mt. McRae Shale from the Pilbara Craton in Western Australia [A. D. Anbar et al., Science 317, 1903–1906 (2007)]. Our data from the oxygenated interval show strong Hg enrichment paired with slightly negative Δ199Hg and near-zero Δ200Hg, suggestive of increased oxidative weathering. In contrast, slightly older beds, which were evidently deposited under an anoxic atmosphere in ferruginous waters [C. T. Reinhard, R. Raiswell, C. Scott, A. D. Anbar, T. W. Lyons, Science 326, 713–716 (2009)], show Hg enrichment coupled with positive Δ199Hg and slightly negative Δ200Hg values. This pattern is consistent with photochemical reactions associated with subaerial volcanism under intense UV radiation. Our results therefore suggest that the whiff of O2 was preceded by subaerial volcanism. The transient interval of O2 accumulation may thus have been triggered by diminished volcanic O2 sinks, followed by enhanced nutrient supply to the ocean from weathering of volcanic rocks causing increased biological productivity.PostprintPeer reviewe

    Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era

    Get PDF
    MAK acknowledges support from NSF Graduate Research Fellowship DGE-1256082. AB acknowledges funding from NSERC Discovery and Accelerator grants. Funding for isotopic analyses was provided by the UW Department of Earth & Space Sciences to MAK and by NASA Exobiology grant NNX16AI37G to RB.Nitrogen isotope ratios in marine sedimentary rocks have become a widely used biogeochemical proxy that records information about nutrient cycling and redox conditions in Earth's distant past. While the past two decades have seen considerable progress in our understanding of the Precambrian sedimentary nitrogen isotope record, it is still compromised by substantial temporal gaps. Furthermore, quantitative links between nitrogen isotope data, marine redox conditions, and nutrient availability are largely lacking in a Precambrian context. Here we present new nitrogen isotope data from a suite of marine sedimentary rocks with ca. 2.4 to 1.8 Ga ages, spanning the Great Oxidation Event in the Paleoproterozoic, to better constrain the response of the nitrogen cycle to the first major redox transition in Earth's history. We further construct a simple box model to describe the major pathways that influenced the nitrogen isotope mass balance of the Precambrian ocean and use this as a platform to evaluate the Precambrian nitrogen isotope record. Within this framework, we find that consistently positive nitrogen isotope values, ranging from +1.1 to +7.7‰, across the early Paleoproterozoic are strong evidence for an expansion of oxygenated surface waters. Since the isotopic signature of aerobic nitrogen cycling is recorded in the biomass of nitrate-assimilating organisms, this implicates widespread nitrate bioavailability in this time interval. The decline in offshore nitrogen isotope ratios in the Mesoproterozoic is consistent with the contraction of oxic waters, which could have inhibited the expansion of nitrate-fueled ecosystems to pelagic waters until the widespread oxygenation of the ocean in the latest Neoproterozoic to early Phanerozoic.PostprintPeer reviewe

    Friedrich Heinrich Jacobi: O Spinozinu nauku u pismima Mosesu Mendelssohnu / Spisi o sporu o boĹžanskim stvarima i njihovoj objavi

    Get PDF
    Understanding how and when Earth's surface became oxygenated is essential for understanding its biogeochemical evolution. Incipient oxygenation of Earth's surface environments before the Great Oxidation Event (GOE; 2.4 Ga) has been well-documented, but the nature of these redox changes, whether protracted or transient, is poorly understood. We present nitrogen isotope ratios, selenium abundances, and selenium isotope ratios from the Jeerinah Formation (2.66 Ga; Fortescue Group, Western Australia) that represent (i) high-resolution evidence of transient surface ocean oxygenation 260 My before the GOE, (ii) a possible muted pulse of oxidative continental weathering, and (iii) the oldest firm evidence for nitrification and denitrification metabolisms. These results, in concert with previous studies, highlight the variability in mechanisms and magnitudes of Neoarchean oxygen fluctuations.Many paleoredox proxies indicate low-level and dynamic incipient oxygenation of Earth's surface environments during the Neoarchean (2.8textendash2.5 Ga) before the Great Oxidation Event (GOE) at 2.4 Ga. The mode, tempo, and scale of these redox changes are poorly understood, because data from various locations and ages suggest both protracted and transient oxygenation. Here, we present bulk rock and kerogen-bound nitrogen isotope ratios as well as bulk rock selenium abundances and isotope ratios from drill cores sampled at high stratigraphic resolution through the Jeerinah Formation (2.66 Ga; Fortescue Group, Western Australia) to test for changes in the redox state of the surface environment. We find that both shallow and deep depositional facies in the Jeerinah Formation display episodes of positive primary δ15N values ranging from +4 to +6textperthousand, recording aerobic nitrogen cycling that requires free O2 in the upper water column. Moderate selenium enrichments up to 5.4 ppm in the near-shore core may indicate coincident oxidative weathering of sulfide minerals on land, although not to the extent seen in the younger Mt. McRae Shale that records a well-documented textquotedblleftwhifftextquotedblright of atmospheric oxygen at 2.5 Ga. Unlike the Mt. McRae Shale, Jeerinah selenium isotopes do not show a significant excursion concurrent with the positive δ15N values. Our data are thus most parsimoniously interpreted as evidence for transient surface ocean oxygenation lasting less than 50 My, extending over hundreds of kilometers, and occurring well before the GOE. The nitrogen isotope data clearly record nitrification and denitrification, providing the oldest firm evidence for these microbial metabolisms.PostprintPeer reviewe

    Bias in carbon concentration and δ13C measurements of organic matter due to cleaning treatments with organic solvents

    Get PDF
    We acknowledge the financial support from the UnivEarths Labex program of Sorbonne Paris Cite (ANR 11-IDEX-00005-02). CH and AL acknowledge support from the Max Planck Society. EES and RB were funded by the NASA Exobiology grant NNX16AI37G and the Virtual Planetary Laboratory of the NASA Astrobiology Institute and were technically assisted by Andy Schauer.Interpreting the organic carbon content (TOC) and stable carbon isotopic composition (δ13C) of organic matter in the sedimentary rock record depends on our capability to accurately measure them, while excluding sources of contamination. This however becomes increasingly problematic as we analyze samples with ever-lower organic carbon content. Accordingly, organic solvents are sometimes used to remove contaminating traces of modern organic matter from ancient rock samples. However, especially for very low TOC samples, traces of solvents or their impurities remaining in the sample may contribute a significant organic contamination that can impact the bulk measurements of both TOC and δ13C values. This study, including three independent investigations performed in different laboratories, is the first detailed examination of the effect of cleaning treatments on the reliability of TOC and δ13C values in a range of natural rock samples and synthetic materials with low TOC content from below detection limit to 3330 ppm. We investigated the four most common organic solvents used to remove modern organic matter: dichloromethane (DCM), n-hexane, methanol and ethanol, and evaluated the effect of grain size and mineralogy. We find that (i) cleaning treatments with methanol, n-hexane and dichloromethane contaminate rock samples when used directly on sample powder, regardless of the grain size; (ii) this pollution buffers the natural variability and homogenizes the δ13C values of samples around the isotopic composition of the solvent, i.e. between −27 and −29‰; (iii) the extent of contamination depends on the solvent used, DCM being the most contaminating (up to 6000 ppm) and ethanol the only solvent that does not seem to contaminate rock samples above our detection limit; (iv) sample mineralogy also exerts an influence on the extent of contamination, clay minerals being more prone to adsorb contaminants. We conclude that the response of carbon concentrations and the stable carbon isotopic composition of organic matter in geological samples to cleaning treatments is neither negligible nor systematic when investigating samples with low carbon content.PostprintPeer reviewe

    Nano-Tubular Cellulose for Bioprocess Technology Development

    Get PDF
    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in “cold pasteurization” processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc
    • …
    corecore