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Abstract 

 Fixed nitrogen is an essential nutrient for eukaryotes. As N2 fixation and assimilation of 

nitrate are catalyzed by metalloenzymes, it has been hypothesized that in Mesoproterozoic 

oceans nitrate was limited in offshore environments by low trace metal concentrations and high 

rates of denitrification in anoxic and episodically euxinic deep water masses, restricting 

eukaryotes to near-shore environments and limiting their evolutionary innovation. To date this 

hypothesis has only been tested in the Belt Supergroup (~1.4 Ga), with results that support an 

onshore-offshore nitrate gradient as a potential control on eukaryote ecology. Here we present 
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bulk nitrogen and organic carbon isotopic data from non-isochronous cross-basinal facies across 

the Bangemall (~1.5 Ga) and the Roper (~1.4-1.5 Ga) basins to better understand the extent and 

variability of onshore-offshore nitrogen isotope gradients in the Mesoproterozoic. Both basins 

show an average ~1-2‰ enrichment in δ15Nbulk from deep to shallow facies, with a maximum 

range from -1‰ offshore to +7.5‰ onshore. Unlike the Belt basin, the Bangemall and Roper 

basins show some offshore δ15Nbulk values that are enriched beyond the isotopic range induced 

by biological N2 fixation alone. This suggests a mixture of aerobic and anaerobic metabolisms 

offshore. In shallow waters, where δ15Nbulk enrichment peaks, an aerobic nitrogen cycle was 

evidently operating vigorously. Even though isotopic signatures of aerobic nitrogen cycling are 

seen in all parts of the Bangemall and Roper basins, our data are consistent with a lateral gradient 

in nitrate availability within the photic zone, with higher concentrations in near-shore 

environments than offshore. The variability in δ15Nbulk values in each depositional environment 

and the consistently low δ15N values from Mesoproterozoic units compared to the 

Paleoproterozoic and Neoproterozoic suggest that nitrate concentrations in the global ocean were 

likely low. This trend is now seen in all three Mesoproterozoic basins so far examined, and 

contrasts with the Paleoproterozoic and Neoproterozoic where nearly all δ15Nbulk data plot above 

the N2 fixation window. Thus, we propose that the Mesoproterozoic ocean was characterized by 

a nitrate minimum between the Paleo- and Neoproterozoic, with the lowest concentrations in 

offshore environments. This inference is consistent with a Mesoproterozoic O2 decline following 

a temporary Paleoproterozoic O2 peak, and it further supports the idea that nitrate limitation 

offshore may have contributed to the restriction of photosynthetic eukaryotes to near-shore 

environments, delaying their rise to ecological dominance until the Neoproterozoic Era. 
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1. Introduction  

 Fixed nitrogen, including nitrate and ammonium, is an essential nutrient for eukaryotes. 

Its scarcity under certain oceanic redox and chemical conditions may have exerted spatial control 

on eukaryotic diversity and abundance to such an extent (Anbar and Knoll, 2002) that it 

repressed the evolutionary radiation of eukaryotic primary producers prior to the Neoproterozoic 

“second rise of oxygen.” Consistent with this hypothesis, Javaux et al., (2001) found that 

eukaryotic microfossil diversity and abundance in the Mesoproterozoic Roper basin were greater 

in marine marginal and inner shelf environments than in outer shelf and basinal settings. Buick 

and Knoll (1999) found a similar trend in acritarchs and prokaryotic microfossils in the 

Mesoproterozoic Bangemall basin, noting a decrease in taxonomic diversity and numerical 

abundance offshore. Contemporaneous with these observed microfossil trends are geochemical 

data in the form of iron-sulfur systematics, Mo and Cr abundances, and sulfur isotopic ratios that 

suggest that the Mesoproterozoic ocean was characterized by more widespread anoxia and 

notably more euxinia than any other time after the Great Oxidation Event (Canfield, 1998; Shen 

et al., 2002; Arnold et al., 2004; Reinhard et al., 2013; Planavsky et al., 2014; Sperling et al., 

2015). In fact, Fe-S systematics and δ34S measurements throughout the Roper Group suggest 

inner and distal shelf depositional environments were likely oxic, while basinal shales record 

prolonged periods of euxinia (Shen et al., 2003). Trace metal concentrations from the same 

basinal shales corroborate basinal anoxia with extended periods of euxinia, but overlying surface 

waters were likely at least transiently oxic (Cox et al., 2016). The “bioinorganic bridge 

hypothesis” (Anbar and Knoll, 2002) links these micropaleontological and geochemical 

observations, as follows:  
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• Biological N2 fixation and assimilation of nitrate are catalyzed by metalloenzymes that 

contain siderophile or chalcophile elements in their active sites (Godfrey and Glass, 

2011). 

•  During the Mesoproterozoic Era, when the ocean had relatively widespread euxinia 

(Canfield, 1998; Reinhard et al., 2013 Sperling et al., 2015), N2 fixation could have been 

limited in offshore environments by low trace metal concentrations, in particular Mo, due 

to their incorporation into precipitating sulfide minerals (Anbar and Knoll, 2002).  

• This may have restricted photosynthetic eukaryotes to near-shore environments as 

suggested by microfossil evidence, prompting ecological subordination to cyanobacteria 

and, as a result, limiting evolutionary diversification (Anbar and Knoll, 2002).  

 But does this elegant theoretical scenario stand up to the constraints provided by 

empirical geochemical data? In an initial study, Stüeken (2013) examined nitrogen isotopic ratios 

along a cross-basinal transect in the Mesoproterozoic Belt Supergroup, USA, and found that 

δ
15Nbulk values changed markedly from ~0‰ basinward to ~+5‰ near-shore. This was 

interpreted as indicating a gradient from an anaerobic system dominated by N2 fixation in the 

open ocean to aerobic nitrogen cycling involving nitrification coupled to partial denitrification in 

shallow settings. Although ammonium may have been present in the deeper water column in 

offshore waters, as in the modern Black Sea (Fuchsman and Murray, 2008), the availability of 

fixed nitrogen of any form was probably low in the photic zone away from coastal areas 

(Stüeken, 2013). This would have been biologically significant, because in the modern ocean 

cyanobacterial phytoplankton commonly outcompete their eukaryotic counterparts where fixed 

nitrogen is scarce, because (a) only prokaryotes can fix atmospheric N2 and (b) organisms with 

smaller cells have a lower nutrient requirement (Lindell and Post, 1995; Latasa and Bidigare, 
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1998; Karl et al., 2001; Bouman et al., 2011; Fawcett et al., 2011).  Also, in modern oceans, the 

infiltration of phytoplankton biomass by larger cells occurs when total rates of primary 

production increase and grazing comes to limit production by smaller cells (Poulin and Franks, 

2010); thus, small cyanobacterial cells would be expected to dominate in off-shore, nutrient-

limited environments. 

  Stüeken (2013), however, examined only one sedimentary basin, which may not have 

been typical of global oceans at that time. Here we report nitrogen abundance and isotopic data 

from two additional basins of roughly equivalent age, the Bangemall (~1.5 Ga) and Roper (~1.5-

1.4 Ga) basins of western and northern Australia, respectively. Although cross-basinal transects 

are not available, stratigraphic profiles through multiple sedimentary sequences provide samples 

of deep subtidal, shallow subtidal and peritidal facies, allowing offshore-onshore comparisons of 

relative nitrogen availability and speciation. Thus, they can indicate whether a nitrate constraint 

on eukaryotic evolution was just a local phenomenon, or more likely a global feature during the 

Mesoproterozoic. 

 

1.1 Precambrian nitrogen cycling 

Nitrogen cycling has been predominantly controlled by the biosphere since the advent of 

biological N2 fixation no later than 3.2 billion years ago (Stüeken et al., 2015), but it has also 

been influenced by changes in atmospheric and oceanic redox states. For example, the 

appearance of free O2 as early as 2.8 Ga (reviewed by Farquhar et al., 2011) in microbial mats 

and marine surface waters (Lalonde & Konhauser 2015, Olson et al. 2013) probably spurred the 

radiation of nitrifying bacteria (Godfrey and Falkowski, 2009) because locally enhanced crustal 

weathering (Anbar et al., 2007; Wille et al., 2007; Reinhard et al., 2009; Czaja et al., 2010; 
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Kendall et al., 2010; Stüeken et al., 2012; Gregory et al., 2015; Kurzweil et al., 2015) would 

have led to a greater influx of trace metals such as Fe, Cu, and Mo. Higher O2 levels combined 

with increasing micro-nutrient availability would have facilitated the oxidation of ammonium to 

nitrite and nitrate (reviewed by Buick, 2007; Godfrey and Glass, 2011). Complementary 

denitrifying bacteria would have been stimulated by the resulting supply of nitrate (Garvin et al., 

2009; Godfrey and Falkowski, 2009). The extent of these coupled oxic-suboxic processes can be 

inferred from the sedimentary record, because they impart a distinct kinetic fractionation on the 

nitrogen isotopes of organic matter compared to those imparted by strictly anaerobic nitrogen 

cycling (Table 1). 

Heavy δ15N(a) values, greater than those produced by biological N2 fixation alone and 

thus interpreted to represent aerobic nitrogen cycling, are known from the late Archean and early 

Paleoproterozoic before the Great Oxidation Event (Yamaguchi, 2002; Garvin et al., 2009; 

Godfrey and Falkowski, 2009; Busigny et al., 2013), and from the later Paleoproterozoic (Kump 

et al., 2011; Godfrey et al., 2013), i.e. during and shortly after the proposed O2 overshoot at 2.3-

2.0 Ga (Bekker et al., 2004; Bekker and Holland, 2012; Planavsky et al., 2012; Hardisty et al., 

2014; Scott et al., 2014, Fig. 1). This suggests that surface waters at these times contained 

enough dissolved oxygen to form significant amounts of nitrate, which was then partially 

denitrified in the water column and assimilated into biomass. Moreover, isotopic profiles from 

cross-basinal facies show no trends (Godfrey and Falkowski, 2009; Godfrey et al., 2013), 

indicating that nitrate was available in the most productive zone of the water column in both on-

shore and offshore settings. Similar patterns are also evident across Neoproterozoic basins (Ader 

et al., 2014). 

                                                
 (a) δ15N = [ (15N/14N)sample / (

15N/14N)standard - 1] ·  1000, where the standard is atmospheric N2. 
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 Nitrogen cycling in the Mesoproterozoic, however, was potentially quite different from 

any other time in Earth’s history. It has been predicted that the expansion of euxinic waters after 

1.8 Ga (Canfield, 1998; Arnold et al., 2004) would have led to the scavenging of trace metals 

such as Mo, Cu, and Fe from seawater into sediments by organic compounds or low-temperature 

sulfide mineral phases (Saito et al., 2003; Reinhard et al., 2013), restricting their availability for 

use as metal cofactors in aerobic nitrogen cycle reactions (Anbar and Knoll, 2002; Buick, 2007). 

For example, Mo concentrations may have been as low as 1-10 nM compared to 105 nM today 

(Reinhard et al., 2013), which may have limited biological N2 fixation and nitrate assimilation 

(Zerkle et al., 2006; Glass et al., 2012). This may in turn have delayed the radiation of 

photosynthetic eukaryotes, which are most productive under a steady supply of nitrate and are 

incapable of N2 fixation (Anbar and Knoll, 2002). Nitrate scarcity could have created a positive 

feedback on trace metal scavenging because it may have spurred microbial sulfate reduction and 

consequently the expansion of euxinic environments (Boyle et al., 2013). This would have 

prolonged nitrate limitation until the extent of euxinia contracted (Sperling et al., 2015) possibly 

through a Neoproterozoic expansion of oxic waters (Canfield et al., 1996; Ader et al., 2014; 

Thomson et al., 2015). For these reasons, much of the Mesoproterozoic ocean may have been 

unsuitable for eukaryotic life. 

Consistent with this idea, the Mesoproterozoic Belt basin displays a distinct onshore-

offshore gradient in nitrogen isotopes (Stüeken, 2013). This trend was interpreted to represent a 

trend in nitrogen speciation, where nitrate was only available in near-shore environments while 

an anaerobic nitrogen cycle dominated by N2 fixation prevailed offshore. A decrease in dissolved 

oxygen concentration and/or bioessential trace metals in offshore environments probably 
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restricted nitrification to shallow waters (Stüeken, 2013). Any nitrate that was produced offshore 

was likely consumed rapidly and quantitatively at the chemocline.  

 

2. Location and Geological Setting 

2.1 Bangemall Supergroup 

 The Bangemall Supergroup crops out over ~100,000 km2 in northwestern Australia (Fig. 

2). Our samples predominantly come from three stratigraphic transects spread over 100 km along 

the Pingandy Shelf which forms the northern limb of the broad synclinorium in which the 

Supergroup is now exposed: from west to east Irregully Creek, Wandarry Creek and Fords 

Creek. These spanned almost the entire ~5 km section of the Edmund and Collier Groups, the 

components of the Supergroup preserved in this region. They largely consist of terrigenous 

mudrocks and sandstones with subordinate carbonates, cherts and conglomerates. Because of 

their broad outcrop area and facies relationships, they have been interpreted as entirely (Edmund 

Group) or dominantly (Collier Group) marine (Martin and Thorne, 2004). Though parts of the 

Bangemall basin may have been restricted from the open ocean, the Pingandy Shelf, from where 

the great majority of our samples come, was evidently a long-lived basement high with variable 

paleo-current patterns (Martin et al., 2004; 2008) suggesting that it was not an isolated and 

restricted sub-basin. On the Pingandy Shelf, deformation has been modest with only broad open 

folding during the Mutherbukin Tectonic Event, the Edmundian Orogeny, and the Mulka 

Tectonic Event (Zi et al., 2015). Several episodes of dolerite sill intrusion occurred during the 

Mesoproterozoic, causing local contact metamorphism of siliceous dolomites to talc-tremolite-

calcite assemblages in aureoles about 100 meters across (Buick et al., 1995). Otherwise 

metamorphism has been insignificant with kerogen color grading from orange-brown in the east 
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to mid-brown in the west indicating a temperature gradient from 100-125°C to ~150°C towards 

the western closure of the synclinorium (Buick and Knoll, 1999). 

 The Bangemall rocks studied here range in age from between 1680-1610 Ma at the base 

of the stratigraphic section (Zi et al., 2015) to slightly older than 1070 Ma at the top (Martin, 

2002; Wingate, 2002; Martin et al., 2008), though most samples come from the >1465 Ma 

Edmund Group (Wingate, 2002). Their depositional environments ranged from a peritidal 

carbonate platform in the Irregully Formation at the base through arenaceous siliciclastic shelf 

sediments containing scattered stromatolitic bioherms in the overlying Gooragoora, Blue Billy, 

Cheyne Springs, Kiangi Creek and Muntharra Formations, to off-shore delta-front and turbiditic 

deposits of the Discovery, Devil Creek, and Ullawarra Formations (Martin and Thorne, 2004). 

The peritidal facies are characterized by silicified dolostones interbedded with green shale and 

cross-bedded sandstone, forming meter-thick transgressive cycles that pass upward from wavy 

laminated microbialites with intraclast breccias and teepee structures through stratiform, 

pseudocolumnar and muricate (linked conical) stromatolites to large bulbous stromatolites 

(Buick et al., 1995; Buick and Knoll, 1999). The shallow subtidal facies comprises unsilicified 

dolostone lenses among coarse-to-fine cross-bedded sandstones, siltstones and grey shales, with 

conical, domical and columnar stromatolites often on a gigantic scale up to 10 meters high and 5 

meters broad. The deeper subtidal sediments deposited offshore commence with black 

kerogenous and sulfidic shale and chert but are dominated by siltstone and grey-green shale with 

minor fine sandstone and nodular to laminated dololutite and calcilutite, with stromatolite 

fragments only occurring in breccia lenses. 

 In terms of geobiological context, δ13Ccarb values are remarkably invariant throughout the 

section, averaging -0.5‰ ± 1.3‰ (Buick et al., 1995). The only significant deviation from such 
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values occurs in the contact metamorphic aureoles around dolerite sills, where δ13Ccarb can go 

down to -8.4‰. However, as these rocks are bleached and kerogen-free, they were not analyzed 

in the current study. As noted above, stromatolites are ubiquitous in the peritidal facies, abundant 

and gigantic in the shallow subtidal facies but present only as breccia fragments in the deeper 

offshore facies. Microfossils are often preserved in early diagenetic chert nodules within the 

peritidal stromatolites, recording benthic mat communities of small filamentous and coccoid 

prokaryotes (the Siphonophycus-Sphaerophycus-Eosynecchococcus-Myxococcoides-

Palaeopleurocapsa assemblage of Buick and Knoll, 1999). In the shallow subtidal facies, large 

non-matting filaments and planktonic sphaeromorph acritarchs with thin walls and moderate 

dimensions are preserved in grey shale (the Siphonophycus-Leiosphaeridia-

Pterospermopsimorpha-Satka assemblage of Buick and Knoll, 1999). In offshore kerogenous 

cherts and shales, only very large chuarid acritarchs with thick multilamellate walls (the 

Crassicorium assemblage) are preserved, their complex ultrastructure indicating that they were 

eukaryotic (Buick and Knoll, 1999). Relevant to nitrogen isotopes, Palaeopleurocapsa in the 

peritidal facies is morphologically similar to an extant genus of N2-fixing cyanobacteria. 

 

2.2. Roper Group 

 Samples from the roughly coeval Roper Group from northern Australia were also 

analyzed in this study. These rocks crop out over 145,000 km2 and have a maximum thickness of 

about 5000 meters. Their age ranges from 1492+/-4 Ma determined by U-Pb in zircon dating for 

the basal Mainoru Formation (Page et al., 2000) to Re-Os dates of 1361+/-31 Ma and 1417+/-29 

Ma from the upper Velkerri Formation (Kendall et al., 2009) and a 1429+/-31 Ma Rb-Sr date 

from the McMinn Formation at the top of the section (Kralik, 1982). The size of the basin, the 
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abundance of glauconite and sulfide minerals, and sedimentary features indicative of strong tidal 

influence have been interpreted as indicating open exchange with the global ocean (Jackson and 

Raiswell, 1991). Sediments are predominantly siliciclastic, ranging from mudrock to sandstone, 

that were deposited in six progradational cycles (Abbott and Sweet, 2000). High degrees of 

pyritization, large fractionations in sulfur isotopes and relatively small molybdenum isotope 

fractionations in black shales indicate that anoxia was pervasive; euxinia was at least transient in 

deeper parts of the basin and was possibly common along continental margins globally at this 

time (Jackson and Raiswell, 1991; Shen et al., 2003; Arnold et al., 2004; Johnston et al., 2008; 

Kendall et al., 2009; Sperling et al., 2015; Cox et al., 2016). In many areas, the rocks are 

essentially unmetamorphosed, having never been exposed to temperatures above the oil window 

(Jackson et al., 1988). 

 The Roper Group is richly fossiliferous (Peat et al., 1978), with microfossil assemblages 

displaying onshore to offshore trends of decreasing abundance and diminishing diversity (Javaux 

et al., 2001). There are abundant acritarchs with ultrastructure and ornamentation indicative of 

eukaryotic affinities (Javaux et al., 2004). In support of this conclusion, kerogen and “live” oil 

from shales and fluid inclusions yield diverse sterane hydrocarbon biomarkers derived from 

eukaryotes (Summons et al., 1988; Dutkiewicz et al., 2003; Dutkiewicz et al., 2004; Volk et al., 

2005; Siljeström et al., 2013; but see Flannery & George, 2014 for a contradictory finding), 

though most biomarkers are of prokaryotic origin. Sulfur isotope studies suggest that some of 

these prokaryotes metabolized by sulfate reduction (Donnelly and Crick, 1988) and sulfur 

disproportionation (Johnston et al., 2008). 

We obtained samples capturing a range of facies from the tide-dominated inner shelf 

platform, the storm-dominated outer shelf, and from the deep basin (Abbott and Sweet, 2000). 
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The tide-dominated inner shelf platform comprises sandstones interbedded with mudstones and 

ooidal ironstones from a coastal sand platform; medium-bedded fine to coarse quartz sandstones 

with trough cross-stratification and ripple marks from a tide-dominated shoreline; and medium to 

thickly bedded sandstones that are massive or have swaley/hummocky cross-stratification from a 

sand-dominated shelf. The storm-dominated shelf consists of thinly interbedded sandstone, 

mudstone, and siltstone with ripple cross-laminae and small scours, or interlaminated siltstone 

and mudstone with minor very fine-grained sandstone. Basinal samples comprise interbedded 

mudstones and siltstones The samples came from four drill cores: Golden Grove 1 (GG1), 

Broughton 1(Br1), Urapunga 4 (U4), and Amoco 82/3 (A82/3). Samples from the Mainoru, 

Crawford, and Hodgson Formations represent one of the six coarsening-upward progradational 

cycles; samples from the Corcoran and Velkerri Formations are from two separate, overlying 

cycles (Abbott and Sweet, 2000). 

 

3. Analytical methods  

 

3.1. Sample preparation for bulk rock analyses 

Sample preparation followed the methods of Stüeken (2013). Samples were first crushed 

into centimeter-sized chips using equipment that was thoroughly cleaned with methanol and 18Ω 

Milli-Q deionized water. These chips were then sequentially cleaned in an ultrasonic bath with 

hexane, methanol and deionized water for 10 minutes each to remove modern organic 

contaminants. The samples were then dried in a fume hood. Next, the chips were pulverized into 

a fine powder using an aluminum oxide ceramic puck mill that was cleaned with deionized 

water, methanol, and pre-combusted silica sand between samples. The powder was treated with 
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0.6 M HCl in three iterations (one per day) to dissolve all the carbonate, and then rinsed with 

deionized water in three more iterations to remove all of the acid. The samples were then left to 

dry in an oven (60 oC) for two days. The carbonate content was determined gravimetrically as 

the difference in mass between the untreated and the decarbonated powder aliquot. 

 

3.2. Kerogen extraction for organic nitrogen 

During early diagenesis, mineralization can liberate NH4
+ from organic compounds, and 

pore-water NH4
+ can then be sorbed by clay minerals through substitution for potassium, due to 

their similar ionic radii. There is still no consensus on whether bulk analyses (kerogen + silicate-

bound nitrogen) or kerogen isolate analyses better record the primary isotopic signals in 

sedimentary rocks, but due to the low metamorphic grade of these samples (section 5.1.4), it 

could be that bulk analyses better reflect primary processes, as kerogen seems to be more 

susceptible to metasomatic alteration (reviewed in Stüeken et al., 2016). However, we further 

extracted the kerogen from a subset of samples where enough powder was available to quantify 

the relative proportions and isotopic compositions of organic-bound and silicate-bound nitrogen. 

The protocol was adapted from Robl & Davis (1993; see also Stüeken et al., 2015a). Around 5 g 

of rock powder were weighed into a 250 ml Nalgene bottle and decarbonated with 100 ml of 6 N 

HCl (reagent grade) at 60 °C in a shaking water bath overnight. Removal of CaCO3 reduces the 

formation of insoluble calcium fluorides in subsequent steps. The acid was decanted after 

centrifugation (45 min at 4000 rpm) and powders were washed once with DI-H2O (18 MΩ). 

Then the silicate matrix was dissolved with a mixture of DI-H2O (100 ml) and concentrated HF 

(100 ml, reagent grade) at 60 °C in the shaking water bath overnight. The acid was again 

decanted after centrifugation. Residual fluoride precipitates were removed by treating the sample 
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with a mixture of H3BO3 (62.5 g, reagent grade), DI-H2O (100 ml) and concentrated HF (100 ml) 

at room temperature in the shaking water bath overnight. After decanting the acid, the sample 

was washed three times with 200 ml DI-H2O, poured into a pre-combusted (500 °C overnight) 

scintillation vial with 10 ml of DI-H2O, and placed into a freeze-drier for two days to remove 

excess water. Nalgene bottles were washed with soap, boiled in bleach for several hours, 

refluxed with concentrated HCl and methanol overnight, thoroughly rinsed with DI-H2O, and 

dried in a clean, closed oven between samples. 

 

3.3. Isotopic analyses 

Isotopic compositions (δ15Nbulk, δ
15Nker and δ13Corg) were determined using a Costech 

ECS 4010 Elemental Analyzer coupled to a Thermo Finnigan 253 continuous flow isotope-ratio 

mass spectrometer. Three in-house standards (two glutamic acids “GA1” and “GA2”, and dried 

salmon “SA”) calibrated with the international reference materials USGS40 and USGS41 (Qi et 

al., 2003) were used to calibrate isotope measurements. Another in-house standard from the late 

Archean Mt. McRae formation (UW McRae) was analyzed frequently as a test for long-term 

precision (Stüeken et al., 2015a). Analytical blanks resulting from the combustion process were 

monitored and subtracted for nitrogen isotope measurements; carbon backgrounds were 

insignificant. The average analytical accuracy of δ15N among the individual runs based on the 

calibrated in-house standard “GA1” was 0.12 ± 0.09‰ (1σ). A similar test for accuracy in δ13Corg 

measurements based on the calibrated in-house standard “SA” was 0.08 ± 0.10‰ (1σ). The 

average analytical precision of δ15N and δ13Corg among the individual runs based on the in-house 

standard “UW McRae” was 0.15‰ (1σ) and 0.13‰ (1σ) respectively. The average standard 

deviation between individual sample replicates was 0.31‰ for δ15N and 0.09‰ for δ13Corg. 
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Replication is the largest source of individual analytical uncertainty, and so it is used to represent 

the error of individual sample analyses. Nearly all samples were analyzed at least twice, except 

in cases where we were sample-limited. Samples where the δ15N values varied by more than 

0.5‰ or that had a nitrogen sample/blank ratio of less than five were replicated further to ensure 

no analytical biases. 

 

4. Results 

4.1. Bangemall basin 

 Bulk δ15N values in the Bangemall basin have a maximum range from -1‰ to +7.5‰ 

with a modest trend towards lower δ15Nbulk values offshore, higher δ15Nbulk values near-shore, 

and variable δ15Nbulk values in peritidal environments (Table A1). Each of the three stratigraphic 

sections (Fords Creek, Irregully Creek, and Wandarry Creek; Fig. 3) shows these characteristics 

(Table 2). Because the three sections cover equivalent facies, we normalized them with respect to 

the thickness of the shallow subtidal facies described by Buick et al. (1995) and plotted a 

composite sequence of δ15Nbulk values from deep to peritidal environments shown in Fig. 3. 

Using all analyses from this composite transect, plus a few additional samples from other 

localities, the average δ15Nbulk value is +3.3‰ ± 1.8‰ (n=18) for the peritidal facies, +3.4‰ ± 

1.4‰ (n=26) for the shallow subtidal facies, and +1.8‰ ± 1.6‰ (n=28) in the deep water facies. 

Both the peritidal and shallow subtidal environments are statistically heavier than the basinal 

environment (pone-tailed = 0.003 and 0.00008 respectively), though peritidal and shallow subtidal 

δ
15Nbulk values are not statistically different from one another (pone-tailed = 0.67). The isotopic 

composition of kerogen isolates match well with the measured δ15Nbulk values (average 

difference of 0.8‰ among replicated samples) (Table A3), which indicates that the observed 
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gradient is not an artifact of mixing between isotopically distinct nitrogen reservoirs (Nkerogen and 

Nsilicate). The average total organic carbon [%] and total nitrogen [%] for the Bangemall Group 

samples are 0.25%, and 0.01% respectively (See table A1). 

 The same set of samples has δ13Corg values that mostly range from -25‰ to -35‰. We 

found a slight basinal gradient of about 3‰ with lighter δ13Corg in samples deposited in deeper 

subtidal environments (Table 3). Samples from each depositional environment come from 

statistically different δ13Corg populations (panova = 0.002).  

 

4.2. Roper basin 

 The Roper basin has δ15Nbulk values ranging from -1‰ to +4.9‰ with a facies-dependent 

trend from lighter values in basinal and storm-dominated shelf samples to heavier values in tide-

dominated platform samples (average gradient in Tables 2, all data in A2). The mean δ15Nbulk 

value in the tide-dominated platform environment is statistically different from that of the storm-

dominated shelf and basinal environments (pone-tailed = 0.008 and 0.0005 respectively). The outer 

shelf and basinal δ15Nbulk populations are statistically indistinguishable from one another (pone-

tailed = 0.27). The average total organic carbon [%] and total nitrogen [%] for the Roper Group 

samples is 0.34%, and 0.02% respectively (See table A2).  

Unlike the Bangemall Group, the Roper Group shows no sign of a trend in δ13Corg across 

the basin (total average -31.3‰ ± 1.55‰, n=34, Table 3). Again, kerogen isolates are very 

similar to bulk samples with an average deviation from the δ15Nbulk values of 0.6‰ for replicated 

samples (Table A3).  

 

5. Discussion 
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5.1. Diagenesis and Metamorphism 

5.1.1. Oxic diagenesis: effects on preserved δ
15

Nbulk 

 Diagenesis under oxic conditions may increase δ15Nbulk by as much as +4‰ (Freudenthal 

et al., 2001; Lehman et al., 2002) due to kinetic fractionation of nitrogen isotopes in favor of 14N 

during the deamination of organic matter (Macko and Estep, 1984), followed by oxidation and 

loss of the resulting light inorganic nitrogen (Freudenthal et al., 2001; Robinson et al., 2012). We 

have no quantitative evidence to completely rule out any effect of oxic diagenesis; however it 

could not by itself explain the full ranges of δ15Nbulk values we observe in the Bangemall (8‰) 

and Roper (6‰) groups, which are greater than the maximum range known to be caused by 

aerobic diagenesis. Furthermore, in the absence of bioturbation, middle Proterozoic sediments 

should have been largely anoxic even under an oxic water column. Hence the effects would 

likely have been much smaller than in modern sediment profiles (Freudenthal et al., 2001). In 

thin sections from the Bangemall Group, shallow sediments show no evidence of being more 

oxidized than deeper equivalents. In particular iron oxides, which have a lower redox potential 

than nitrate and should thus have formed if pore fluids that were oxidizing enough for 

nitrification, are absent in both facies. Therefore, a systematic bias of shallow oxic and deep 

anoxic diagenetic isotope effects is unlikely to be the reason for the basinal gradients in δ15Nbulk.  

 

5.1.2. Anoxic diagenesis: effects on preserved δ
15

Nbulk 

 Anoxic diagenesis can decrease the δ15Nbulk of bulk nitrogen in sediments through either 

the addition of 15N-depleted biomass from in-situ growth of anaerobic bacteria (Lehman et al., 

2002), or if organic compounds with relatively higher δ15N values such as proteins (Macko et al., 

1987) are preferentially degraded, releasing isotopically heavy NH4
+ into pore waters. However, 
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neither of these mechanisms should have introduced a basinal gradient, because as noted above 

all sediment samples in this study likely underwent anoxic diagenesis regardless of the redox 

state of the overlying water column. Indeed if anoxic diagenesis caused addition of light Norg 

from bacterial growth, derived from N2 fixation or the preservation of its isotopic signal, 

(Lehman et al., 2002), then preferential growth of those organisms in deeper environments 

would only support our interpretation of offshore nitrate depletion (discussed below). We can 

further address the latter mechanism, i.e. preferential 15N loss from degrading biomass, by 

comparing bulk δ15N values to the δ15N values of kerogen isolates. This diagenetic pathway 

should have led to an isotopic enrichment in silicate minerals that absorbed some of the 

dissolved heavy NH4
+. Hence the δ15N of the kerogen isolate from a sample should be 

systematically lighter than its bulk value, which is not observed. In fact, the Roper and 

Bangemall kerogen analyses show a very slight average isotopic enrichment of +0.6‰ and 

+0.8‰, respectively, over the bulk analyses (Table A1). These data may be best explained if 

NH4
+ release did not lead to a net isotopic fractionation, perhaps because the effects of kinetic 

fractionation during deamination (Macko and Estep, 1984) and relative compound instabilities 

(cf. Macko et al., 1987) were roughly balanced. Bulk sediment values are therefore probably 

close to the original isotopic composition of biomass.   

 

5.1.3. Diagenetic effects on the δ
13

C of organic matter 

Both aerobic and anaerobic diagenesis mildly decrease the δ13C of organic matter to a 

maximum of ~1.6‰ (Freudenthal et al., 2001; Lehman et al., 2002), probably due to preferential 

degradation of isotopically heavy organic compounds. Carbohydrates and proteins, which are 

more susceptible to microbial degradation under both oxic and anoxic conditions, tend to be 
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more enriched in δ13C than other more recalcitrant fractions such as lipids (Lehman et al., 2002). 

Diagenetic effects can be larger (on the order of ~20‰ depending on the substrate) if organic 

degradation is catalyzed by microbes using the Wood-Ljungdahl pathway, which includes 

methanogens, methanotrophs, and acetogens (Freude and Blaser, 2016). The range of δ13Corg in 

the Bangemall samples is too large (~10‰) to be explained solely by diagenetic effects that do 

not involve the Wood-Ljungdahl pathway. The slight gradient from lighter values offshore to 

heavier values near-shore is similar to the environmental trends seen in other studies spanning 

the Archean and Proterozoic (Eigenbrode and Freeman, 2006; Bekker et al., 2008; Guo et al., 

2013), suggesting that it is a primary feature reflecting differential contributions from varying 

microbial metabolisms in response to local redox conditions (Section 5.2).  

 

5.1.4. Metamorphism 

 Four lines of evidence indicate that the effects of metamorphism on primary nitrogen 

isotope signals were probably insignificant. First, as stated previously, both the Bangemall and 

Roper rocks were not exposed to temperatures much above the oil window (Jackson et al., 1988; 

Buick and Knoll, 1999), whereas there seems to be no metamorphic effects on nitrogen isotopes 

(i.e. preferential loss of 14N) in other rocks up through the gas window (Rivera et al., 2015); 

these may only become important (> 1 ‰) at greenschist facies and above (reviewed by 

Thomazo and Papineau, 2013). Second, the slight metamorphic gradient from east to west in the 

Bangemall basin does not parallel, but is nearly perpendicular to, the three transects, but no 

significant differences are evident between them. Third, if metamorphism did have an effect on 

the nitrogen isotope ratios of the samples, then increasing δ15Nkerogen should correlate with 

increasing (C/N)kerogen ratios, as nitrogen is more mobile than carbon and 14N is more mobile than 
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15N under such conditions (Haendel et al., 1986; Bebout and Fogel, 1992; Jia, 2006). However, 

such correlations are not seen in either sample set (Fig. 4, r2 = 0.28 for Bangemall, and r2 = 0.14 

for Roper). Lastly, offsets between δ15Nsilicate and δ15Nkerogen of up to ~12‰ have been observed 

in rocks within hornfels aureoles (Godfrey and Falkowski 2009), suggesting there may be a 

relationship between increasing metamorphic grade and increasingly divergent δ15Nbulk and 

δ
15Nkerogen values. There is little consensus on whether kerogen or bulk nitrogen better preserves 

primary biological signals (see Stüeken et al., 2016); however, on average, the kerogen nitrogen 

isotope values in the Bangemall and Roper Groups fall within 0.7‰ of bulk values, inconsistent 

with significant metamorphic alteration.  

In the case of carbon isotopes, metamorphism also can spur exchange between the carbon 

in organic matter and the carbon in carbonates, causing δ13Ccarb to become depleted by up to 5‰ 

and δ13Corg to become enriched by as much as 15‰ (reviewed by Schidlowski, 1987). This effect 

is sensitive to the relative percentages of carbonate to organic carbon. Hence in carbonate-rich 

sediments such as the Bangemall samples, depletion of the carbonate may not be noticeable but 

enrichment of organic matter might be prominent. However, fractionations caused by carbon 

equilibration between organics and carbonates are generally insignificant below greenschist 

facies (McKirdy and Powell, 1974; Hoefs and Frey, 1976; Hayes et al., 1983). There is no 

inverse correlation between the δ13Corg and δ13Ccarb values of the same Bangemall samples (r2 = 

0.003), and the total fractionation ∆13C (= δ13Ccarb – δ13Corg) is not inversely correlated with 

carbonate content (r2 = 0.008), even in the largest negative excursions of δ13Ccarb. These lines of 

evidence all suggest the carbon isotopic composition of the samples measured in this study are 

unaltered by metamorphism.  
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5.2 Carbon cycling in the Bangemall and Roper basins 

 The Bangemall basin shows a slight spatial trend in δ13Corg values, with relatively more 

depleted values offshore and more enriched values near-shore (Table 3). The δ13Corg gradient in 

the Bangemall basin is thus the opposite to that of the Belt basin (Stüeken, 2013), where onshore 

sediments are markedly depleted in δ13C compared to offshore sediments (Table 3, panova = 

0.0009). However, a similarly oriented gradient to this study was recently reported from the 

roughly contemporaneous Jixian Group (1.5 Ga) with values around -28.2‰ onshore and -

30.8‰ offshore with panova < 0.0001 (Table 3, Guo et al., 2013). Given that δ13Ccarb is nearly 

invariable in this and earlier Mesoproterozoic basins (Buick et al., 1995), this gradient is 

probably not caused by changes in the isotopic composition of dissolved inorganic carbon, as 

seen from the later Mesoproterozoic onwards (Bartley and Kah, 2004; Gilleaudeau and Kah, 

2013), but may instead reflect spatial variability in biological fractionation effects. A similar 

trend was also observed in the Pretoria and Fortescue Groups, which along with the Jixian Group 

and Bangemall Group represent the Mesoproterozoic, Paleoproterozoic, and Neoarchean. 

(Eigenbrode and Freeman, 2006; Bekker et al., 2008; Guo et al., 2013). All δ13Corg values in the 

Bangemall and Roper basins are consistent with autotrophic fixation of CO2 by the Calvin cycle 

that is used by a wide range of organisms including cyanobacteria and eukaryotic algae (Hayes, 

2001). However, the fact that multiple basins through time show a similar trend suggests there 

may be (i) autotrophic carbon fixation under a gradient of nutrient availability, or (ii) 

photoautotrophic biomass mixed with varying proportions of secondary chemoautotrophic and/or 

heterotrophic biomass, as proposed for the contemporaneous Belt and Jixian basins (Guo et al., 

2013; Stüeken, 2013). Such secondary metabolisms could include methanogenesis, acetogenesis, 

and methanotrophy that use the Wood-Ljungdahl pathway and are known to cause large 



  

22 

 

fractionations in carbon isotopes (Freude and Blaser, 2016)  We cannot rule out either 

possibility, and it is also not clear why the reverse gradient is seen in the Mesoproterozoic Belt 

basin (Stüeken, 2013). The samples from the Roper Group do not show a gradient in δ13Corg 

values. 

 

5.3. Nitrogen cycling in the Bangemall and Roper basins 

 The Bangemall transects and the Roper Group samples all show a ~1.0‰ to ~2.0‰ 

gradient in nitrogen isotopes, with lighter values recorded in offshore facies and heavier values 

in near-shore facies. We note that our results for the deep subtidal/basinal facies of the 

Bangemall and Roper groups (+1.8‰ ± 1.6‰, n = 28; +2.0‰ ± 0.8‰, n = 8 respectively) are in 

good agreement with basinal mudstones from the roughly contemporaneous Xiamaling 

Formation (δ15Nbulk = +2.1±0.2‰, n = 4, age 1.37 Ga) (Luo et al., 2015). The facies-dependent 

trend in the Bangemall and Roper basins likely reflects primary nitrogen cycling rather than post-

depositional alteration (see above), and so is interpreted as being consistent with cross-basin 

differences in nitrogen speciation, comparable to the Belt basin (Table 2; Stüeken, 2013). As 

noted in Section 1, Fe-S systematics, δ34S, and trace metal data also have facies-dependent trends 

in the Roper Group, providing evidence for an oxic near-shore water column, and anoxic/euxinic 

basinal deep waters overlain by at least transiently oxic surface waters (Shen et al., 2003; Cox et 

al., 2016). There are no equivalent data for the Bangemall Group, but a similar range of 

conditions appears to have been widespread in the Mesoproterozoic ocean (Sperling et al., 2015). 

These data are consistent with, and indeed support, our interpretation of the nitrogen isotope data 

which follows. 
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 The lightest δ15Nbulk values are most plausibly explained by an ecosystem dominated by 

N2 fixation using the molybdenum-bearing nitrogenase Nif (Zerkle et al., 2008; Nishizawa et al., 

2014; Zhang et al., 2014). If the ocean had been fully oxygenated at that time, more so than 

today, then values around 0‰ could in theory also have been produced by quantitative 

nitrification of biomass followed by quantitative re-assimilation of nitrate without any 

denitrification and consequent isotopic fractionation in oxygen-minimum zones (Quan and 

Falkowski, 2009). However, this scenario is unlikely in the mid-Proterozoic, where widespread 

anoxia has been well documented (Arnold et al., 2004; Planavsky et al., 2011; Poulton and 

Canfield, 2011; Reinhard et al., 2013; Sperling et al., 2015). An N2-fixation dominated regime is 

thus the most parsimonious explanation for light δ15Nbulk values in our samples.  

Three alternative mechanisms can be considered to explain the isotopically heavy δ15N 

values (> 2‰) (see Stüeken, 2013, Ader et al., 2016, and Stüeken et al., 2016 for detailed 

discussion).  

(i) It has been hypothesized that in an anaerobic nitrogen cycle, partial assimilation of an 

NH4
+ pool by organisms can leave the residual NH4

+ pool enriched in 15N, as life 

preferentially assimilates 14N into biomass (Papineau et al., 2009). If this enriched pool of 

NH4
+ is subsequently transported to a different location and assimilated by organisms, 

two isotopic facies result: the first location preserves light δ15Nbulk and the second 

preserves heavy δ15Nbulk.  

(ii) Partial nitrification of NH4
+ can create a nitrate pool that is depleted in 15N and a residual 

NH4
+ pool that is enriched in 15N because nitrification preferentially selects for the lighter 

isotope. Assimilation of the NH4
+ pool will result in heavy δ15Nbulk so long as the light 

nitrate is removed from the system, either through subsequent complete denitrification or 
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relocation. Partial nitrification is rare in modern water columns, occurring where 

seasonally fluctuating oxygen concentrations occur in transiently stratified waters 

(Granger et al., 2011; Morales et al., 2014). However, it is possible that low oxygen 

concentrations in the Mesoproterozoic enabled more widespread partial nitrification 

coupled with the removal of the light nitrate pool by complete denitrification. Subsequent 

uptake of the leftover heavy NH4
+and further remineralization of organic matter to NH4

+ 

could result in a range of positive δ15Nbulk values (Stüeken, 2013; Morales et al., 2014).  

(iii) Partial denitrification of a nitrate pool in the water column will leave the residual nitrate 

enriched in 15N, as the biologically governed steps of denitrification, like nitrification, 

preferentially use 14N over 15N. So N2(g), the most common end-product of denitrification, 

would be isotopically depleted in 15N and organisms could assimilate the remaining 

heavy nitrate pool. This is the mechanism producing heavy δ15Nbulk in the modern ocean 

(e.g. Sigman et al., 2009b; Tesdal et al., 2013). 

Mechanisms (i) and (ii) should result in two distinct isotopic reservoirs, one that is 

relatively depleted below -2‰, and one that is relatively enriched above +1‰. There are no 

samples or sample sets from this study that are lighter than the δ15Nbulk values that would result 

from N2 fixation by Mo-nitrogenase (-2‰ to +1‰, Zhang et al., 2014). We cannot rule out that a 

much lighter facies exists somewhere within or adjacent to the Bangemall and Roper basins, but 

was not sampled. Nevertheless, explanations (i) and (ii) are unlikely for several reasons. First, 

the Black Sea, our best modern analog for the Mesoproterozoic ocean, has a large NH4
+ reservoir 

in the anoxic bottom water, but underlying sediments do not record evidence of partial NH4
+ 

assimilation; values are close to 0‰, reflecting nitrogen limitation and N2 fixation in the photic 

zone (Fulton et al., 2012). The same is true for the modern anoxic Cariaco basin (Haug et al. 
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1993). This argues against an isotopically light nitrogen reservoir resulting from partial NH4
+ 

assimilation in the similarly chemically stratified Mesoproterozoic ocean (option i). 

Hydrodynamically, the Black Sea and Cariaco basin are probably more stagnant than open 

marine settings like the Roper and Bangemall basins, and so it is conceivable that these 

Mesoproterozoic settings experienced a relatively higher upwelling flux of NH4
+ from deeper 

waters into the photic zone. In theory, this scenario could favor non-quantitative NH4
+ 

assimilation. However, in the modern ocean, NO3
- assimilation usually goes to completion with 

minimal net isotopic fractionations because nitrogen is the proximally limiting nutrient (e.g. 

Tesdal et al. 2013, Thunnel et al. 2004, Tyrrell, 1999). There is no a priori reason to expect that 

this would have been different if the nitrogen compound was NH4
+ instead of NO3

-. This is 

especially true if low Mo levels reduced N2 fixation rates in the Mesoproterozoic ocean and 

exacerbated nitrogen limitation (Reinhard et al. 2013). Furthermore, upwelling would have been 

most pronounced along the continental margin rather than far offshore, and so the hypothetical 

isotopically light reservoir should be preserved in our sample set, which is not the case. 

Regarding option (ii), in the Black Sea nitrification quickly goes to completion under suboxic 

conditions at the chemocline (Fuchsman and Murray, 2008). The same is true in bacterial 

cultures and oxygen minimum zones along open marine margins (Füssel et al., 2012; Martens-

Habbena et al., 2009; Thamdrup et al., 2012), suggesting that partial nitrification may also have 

been rare in the past as long as surface waters were at least mildly oxidizing. Indeed, in modern 

environments partial nitrification requires transient seasonal changes in the environment such as 

fluctuating sea ice cover and is not known to operate over long geologic timescales. This leaves 

option (iii), partial denitrification at the chemocline (cf. Sigman et al., 2009b) or in sediment 

pore waters (Kessler et al., 2014) as the most plausible mechanism responsible for heavier 
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δ
15Nbulk values in the shallower facies of the Bangemall and Roper basins. We thus interpret the 

large variations of δ15Nbulk in the Bangemall and Roper basins as reflecting differential mixing 

between components derived from N2 fixation (alone responsible for the most depleted values 

between -2‰ to +1‰) and from an aerobic nitrogen cycle coupled with varying degrees of 

partial denitrification of a nitrate pool followed by nitrate assimilation yielding δ15Nbulk values 

above +1‰. 

As some peritidal samples have anomalously light δ15Nbulk values, it may be that N2 

fixation temporarily dominated in microbial mats that were transiently cut off from the marine 

nitrate pool at low tide, which would be consistent with microfossil evidence from the 

Bangemall basin peritidal facies, where Palaeopleurocapsa (morphologically similar to a 

modern genus of nitrogen-fixing cyanobacteria; Section 2.1) is found (Buick and Knoll, 1999). 

All shallow subtidal samples have δ15Nbulk values above +1‰ (barring one outlier), suggesting 

that some nitrate was always available in the water column and that there was a permanent 

chemocline where partial denitrification was occurring. Deep subtidal samples have lower 

δ
15Nbulk values than shallow (Table 2) and contain samples within the -2‰ to +1‰ range (Fig. 5, 

6). Almost all deep-water values for both basins are lighter than +3 ‰, i.e. lighter than most 

modern and recent marine sediments (> +4 ‰, e.g. Sigman et al., 2000; Galbraith et al., 2013; 

Algeo et al., 2014). This suggests that offshore sites had less nitrate available compared to 

shallower facies and the modern deep ocean. Thus our data is consistent with at least some 

nitrate in all depositional environments in both the Bangemall and Roper basins, but relatively 

more in near-shore facies than offshore. When we discuss nitrate availability, we refer to 

availability in the zones of highest biological production, as this zone will result in the 

dominating isotopic signal preserved in sediments. This is probably the photic zone, and it is 
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unlikely that nitrate could have existed much deeper in the water column if bottom waters during 

the Mesoproterozoic were predominantly anoxic. 

 

 

5.4. δ
15

Nbulk variability in the Bangemall and Roper basins 

The variability of δ15Nbulk values in the Bangemall and Roper shallow water facies can be 

better understood by drawing an analogy to the variability of δ34S values proposed for the 

Proterozoic (Kah et al., 2004). In this conceptual model, the rate of change in the nitrate isotopic 

composition in the shallow water environments is controlled by the size of the nitrate reservoir, 

and the size and isotopic composition of fluxes that both add and remove isotopically distinct 

nitrogen. The relationship is as follows, with fluxes labeled in Figure 7: 

d(δNO3-)/dt = (Fupwell*∆upwell + Fnitri.*∆nitri. + Ffixation*∆fixation – Fassim*∆assim – Fden.sed.*∆den.sed. – 
Fden.wc.*∆den.wc.) / MNO3-  

 
d(δNO3-)/dt is the isotopic rate of change of the shallow water nitrate reservoir. Fupwell is the 

flux of nitrogen being upwelled from deep water environments. ∆upwell is equivalent to δ15NNH4+ - 

δ
15NNO3-, which is the isotopic difference of the ammonium being upwelled and the existing 

shallow water nitrate reservoir. Fnitri.*∆nitri. is the isotopic flux term of organic nitrogen that is 

nitrified within the shallow water environment. ∆nitri. is 0 because nitrification likely goes to 

completion, and will preserve the isotopic composition of shallow water nitrate, from which the 

organic matter was likely derived. Ffixation*∆fixation is the isotopic flux contributed by N2 fixation 

in shallow water environments. This flux could contribute to changes in the isotopic composition 

of shallow water nitrate as ∆fixation equals δ15Nfixation - δ
15NNO3-. It may be the case, however, that 

Ffixation is 0 because N2 fixation was probably negligible onshore where nitrogen was more 

available. Fassim*∆assim is the isotopic flux of nitrogen being assimilated by shallow water 
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organisms. This is likely also 0, as there is no evidence for non-quantitative assimilation 

(negative δ15Nbulk values). Fden.sed.*∆den.sed is the isotopic flux associated with sedimentary 

denitrification. ∆den.sed is also close to 0, as sedimentary denitrification does not impart large 

isotopic fractionations on the nitrate in the overlying water column (Kessler et al., 2014; Rooze 

and Meilie, 2016). Fden.wc.*∆den.wc is the isotopic flux from canonical water column 

denitrification. ∆den.wc is around 20. MNO3- is the total onshore nitrate reservoir in grams or moles. 

Removing the 0 terms, we are left with: 

d(δNO3-)/dt = (Fupwell*∆upwell – Fden.wc.*∆den.wc.) / MNO3- 

The average isotopic rate of change is 14.7‰, 4.7‰, and 0.3‰ per 100 meters within the 

shallow water facies of the Bangemall, Roper, and Belt basins respectively. The sedimentation 

rates between the basins were likely different, but if we assume that they were somewhat 

comparable then these isotopic rates of change may reflect primary changes in shallow water 

nitrate. For the Belt basin d(δNO3-)/dt is an order of magnitude less than in the Bangemall and 

Roper basins. In the context of our model, this would have to result from the Belt basin either 

having a greater nitrate reservoir in shallow waters (MNO3-), or smaller fluxes (Fupwell*∆upwell and 

Fden.wc.*∆den.wc). It is unlikely that the Belt basin had a greater nitrate reservoir compared to the 

Bangemall and Roper basins because it was likely more restricted from the open ocean (see 

following section). As a result of this restriction, upwelling and water column denitrification 

fluxes were likely smaller in magnitude in the Belt basin than those in the Bangemall and Roper 

basins.  

In this conceptual model, then, the Bangemall and Roper basins, having a greater 

connection to the open ocean, had larger upwelling and denitrification fluxes that, when altered, 

resulted in changes in the isotopic composition of the shallow nitrate reservoir. This variability is 



  

29 

 

reflected in the variability of δ15Nbulk values from the shallow water depositional environments in 

each basin. Variability in the deep basin can be attributed to a small nitrogen reservoir, where 

incursions of nitrate into the deep ocean could not fully be isotopically buffered by existing 

NH4
+. If the fixed nitrogen reservoir had been larger in the Mesoproterozoic ocean, then it would 

have been less susceptible to isotopic change. The degree of variability in our sample sets may 

thus be a reflection of a small and isotopically variable nitrogen supply in comparison to the 

Paleo- and Neoproterozoic settings that are more uniform (Section 5.6). 

 

 

 

5.5. Comparing the Bangemall and Roper basins to the Belt basin 

 The Bangemall and Roper basins show facies-dependent trends in nitrogen isotopes 

similar in direction to but smaller in magnitude than the Mesoproterozoic Belt Supergroup 

(Table 2; Stüeken, 2013), suggesting that such a pattern may have been common in the 

Mesoproterozoic Era. The Belt basin, however, has a deep depositional environment where 80% 

(n=21) of the samples fall within the range of Nif N2 fixation, compared to 36% and 8% in the 

Bangemall and Roper respectively. This difference could be an artifact of sampling, if relatively 

deeper facies were sampled in the Belt and not captured in the Bangemall transects and Roper 

samples. However, the Belt basin could instead have been more restricted and consequently 

more strongly stratified than the Bangemall and Roper basins, which may have led more rapid 

depletion of the dissolved nitrate reservoir. This hypothesis is supported by the geometry of the 

Belt basin, which is thought to have been formed by intracontinental rifting (Lydon, 2007) and 

may only have had limited exchange with the open ocean for some of its history (e.g. Winston, 
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1990; Luepke and Lyons, 2001; Pratt, 2001). The unusually steep gradient in organic carbon 

isotopes from -32.2‰ to -22.9‰, which is not seen in any other Mesoproterozoic basins (Guo et 

al., 2013, this study), further supports significant water mass stratification in the Belt basin. 

Hence the subtler carbon and nitrogen isotopic gradients in the Roper and Bangemall basins may 

be more representative of global marine conditions. Importantly, none of the three basins show 

nitrogen isotope values within the range of vanadium or iron-based nitrogenases (< -6‰, Zhang 

et al., 2014), suggesting that Mo was available in sufficient quantities for the dominance of the 

molybdenum nitrogenase despite being present at low concentrations in the Mesoproterozoic 

ocean (Reinhard et al., 2013).  

 

5.6. Mesoproterozoic nitrate minimum 

While available data are consistent with a basinal gradient in δ15Nbulk and thus in nitrogen 

speciation in the Mesoproterozoic (Section 5.3), this was not the case in the earlier and later 

Precambrian. In the mid-Archean Witwatersrand Supergroup (2.87-2.96 Ga), sediments 

deposited near estuaries (+1.2 ± 1.0 ‰) are on average slightly heavier than marine sediments 

further offshore (-1.6 ± 0.8 ‰) (Stüeken et al., 2015a), but almost all of these values fall within 

the range of biological N2 fixation. The subtle gradient is thus more likely a result of varying 

Fe2+ availability to diazotrophic microbes (Zerkle et al., 2008) rather than a gradient in nitrate 

abundance. Nitrate was likely scarce in all parts of the mid-Archean ocean, including shallow 

waters (Stüeken et al., 2015a), consistent with very low levels of atmospheric oxygen at this time 

(Pavlov and Kasting, 2002; Kurzweil et al., 2013; Lyons et al., 2014). Surface water nitrate 

levels may have increased in the late Archean with the onset of low levels of oxidative 

weathering and enhanced oxygenation of the surface ocean (Siebert et al., 2005; Wille et al., 



  

31 

 

2007; Kendall et al., 2010; Stüeken et al., 2012; Zerkle et al., 2012; Gregory et al., 2015; 

Kurzweil et al., 2015). In the Ghaap Group in South Africa (2.67-2.52 Ga), bulk δ15Nbulk values 

have a mean of +4.6 ± 2.0 ‰ and show no systematic variation between different facies, which 

include shallow-water microbialites and deeper-water siliciclastic sediments (Godfrey and 

Falkowski, 2009). These results were interpreted as evidence of aerobic nitrogen cycling 

(Godfrey and Falkowski, 2009), implying that nitrate had become a significant ion in the surface 

ocean at this time. Across the Archean-Proterozoic boundary in the Hamersley Group in Western 

Australia (2.50-2.46 Ga), combined data sets from Garvin et al. (2009) and Busigny et al. (2013) 

capture offshore marine facies from the outer shelf and the shelf edge, respectively, and in both 

settings values are mostly above +4 ‰, especially after the ‘whiff of oxygen’ at 2.5 Ga (Anbar et 

al., 2007; Garvin et al., 2009; Stüeken et al., 2015b). Although data from contemporaneous 

shallow marine sediments are not available, these fairly heavy values in offshore sediments are 

distinct from the comparatively light values found in the Mesoproterozoic (Stüeken, 2013, this 

study) and provide strong evidence for a significant reservoir of nitrate throughout the surface 

ocean at the end of the Archean and extending into the early Paleoproterozoic. From the late 

Paleoproterozoic, Godfrey et al. (2013) analyzed drill-core samples along a basinal profile in the 

Animikie Group (1.87-1.84 Ga) and reported a subtle gradient of 1.0-1.4‰ from onshore to 

offshore, the latter being slightly lighter, but nearly all their values (98%) were above +3‰ 

irrespective of environment. Hence nitrate was probably relatively abundant in the surface ocean 

across all environments in the Animikie basin. This may also have been the case in most of the 

Neoproterozoic where bulk δ15N values are mostly above +2 ‰ and show no systematic basinal 

gradient (Ader et al., 2014). From the late Neoproterozoic onwards, nitrate depletion is only 

reported during temporary anoxic events (e.g. Rau et al., 1987; Sephton et al., 2002; Ohkouchi et 
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al., 2006; Junium and Arthur, 2007; LaPorte et al., 2009; Schoepfer et al., 2012; Wang et al., 

2013; Cremonese et al., 2014); throughout most of the Phanerozoic the nitrogen cycle seems to 

have been predominantly aerobic with little spatial variance (Algeo et al., 2014). Hence the 

Mesoproterozoic basins analyzed in this study appear to be anomalous in displaying subtle but 

significant facies-dependent variation in nitrogen isotopes and, by inference, nitrogen speciation.  

We cannot rule out the possibility that this pattern is biased by latitudinal or 

oceanographic effects, because all of the Mesoproterozoic sites were originally located at low 

latitudes (< 30°, Idnurm et al., 1995; Elston et al., 2002) and in epicontinental seas, which could 

have enhanced stagnation and stratification of the water column. The Paleoproterozoic Animikie 

basin, on the other hand, formed at a higher latitude (>60°, Symons, 1966) possibly under colder 

temperatures, which would have favored downward mixing of oxidants produced in the upper 

ocean. Samples from other localities and better constraints on paleolatitude for other 

Precambrian basins would be needed to test this possibility. 

The relatively light δ15Nbulk values in offshore sediments from the Mesoproterozoic are 

unique and may have been a global characteristic of this time period (Fig. 6). Fig. 1 shows a 

compilation of bulk nitrogen isotopic compositions from offshore marine environments, 

highlighting the decline between ~1.7 Ga and ~1.2 Ga or possibly later. This interval post-dates 

the proposed mid-Paleoproterozoic oxygen overshoot (~2.3-2.0 Ga, Bekker and Holland, 2012; 

Canfield et al., 2013; Partin et al., 2013; Hardisty et al., 2014) and has recently been identified as 

a time when atmospheric pO2 may have dropped back to as little as 0.1% or as great as 4% 

(Zhang et al., 2016; Cox et al., 2016) of present atmospheric levels until a second, potentially 

protracted rise to nearer modern amounts across the Neoproterozoic/Paleozoic, possibly 

beginning at ~800 Ma (Planavsky et al., 2014; Blamey et al., 2016). Statistical analysis of global 
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Fe-speciation data indicates that while subsurface anoxia was widespread throughout the 

Proterozoic Eon, euxinia was disproportionately common in Mesoproterozoic oceans (Sperling 

et al., 2015), consistent with lower atmospheric oxygen levels. Marine sulfate concentrations are 

also thought to have declined after 1.7 Ga from ~10 mM to less than 1.8 mM, followed by a 

return to > 2-3 mM after 1.3 Ga (Kah et al., 2004; Planavsky et al., 2012; Luo et al., 2014; Scott 

et al., 2014). Given that the redox potential of nitrate is intermediate between that of sulfate and 

oxygen (Brookins, 1988), it is plausible that the abundance of nitrate in the surface ocean also 

declined in the mid-Proterozoic. This would have encouraged microbial N2 fixation, leading to 

relatively low δ15Nbulk values in offshore marine sediments (Fig. 6). Nitrification of ammonium 

to nitrate requires oxygen, and so the production of nitrate was perhaps favored in shallow waters 

where O2 was actively being produced. In contrast, nitrification may have been suppressed 

further offshore where O2 production was lower.  

 

5.7. Implications for life 

Both the Bangemall and the Roper basins have fossil assemblages that are consistent with 

an onshore-offshore trend of decreasing organismic diversity and abundance seawards (Buick 

and Knoll, 1999; Javaux et al., 2001). Stüeken (2013) suggested there could be a linkage 

between the basinal nitrate gradient observed in the Belt basin and the fossil distributions in the 

Bangemall and Roper basins, if they also had a nitrate gradient. Although our data are 

inconsistent with complete nitrate depletion offshore in the Roper and Bangemall basins (unlike 

in the Belt basin), several features of our results indicate that nitrate concentrations were 

probably significantly lower than in the Paleoproterozoic, Neoproterozoic, and modern ocean. 

First, δ15N values were below +3‰ in offshore Mesoproterozoic sediments compared to +4‰ to 
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+5‰ in the Cenozoic and modern (Tesdal et al., 2013; Algeo et al., 2014) (Fig. 6), which likely 

reflects a mixture of two biological inputs from nitrate-assimilating organisms (δ15N > 0‰) and 

diazotrophs (δ15N ~ 0‰). The latter would not have been ecologically significant if nitrate had 

been abundant because N2 fixation is energetically costly. Second, the lightest δ15Nbulk data from 

the peritidal facies suggest rapid nitrate depletion and domination by N2 fixers during temporary 

restriction from the marine nitrate reservoir. This is consistent with microfossil evidence from 

the Bangemall basin peritidal facies where Palaeopleurocapsa which resembles a modern genus 

of nitrogen-fixing cyanobacteria (Section 2.1) is found (Buick and Knoll, 1999). Further support 

comes from biomarker evidence from the late Mesoproterozoic Taoudeni basin (1.1 Ga), which 

indicates that even some shallow waters during the Mesoproterozoic could have also been 

deficient in oxidized nitrogen species (Blumenberg et al., 2012). Lastly, the variability in δ15N 

throughout the basins is best explained by a small nitrate reservoir whose relative size and 

isotopic composition were easily perturbed. Similar variability is seen in sulfur isotopes from the 

Mesoproterozoic, which is interpreted as an artifact of a small sulfate reservoir (Kah et al., 2004; 

Guo et al., 2015). It is likely that the magnitude of nitrogen speciation trends varied between 

different basins; nevertheless all the currently available nitrogen isotope data point towards 

generally low Mesoproterozoic nitrate concentrations in the surface ocean with a minimum in 

offshore waters.  

If so, then nitrogen availability may have contributed to the ecological distribution of 

marine organisms. As photosynthetic eukaryotes are apparently outcompeted by prokaryotes in 

nitrate-limited environments (Malone, 1980; Li et al., 1992; Lindell and Post, 1995; Latasa and 

Bidigare, 1998; Karl et al., 2001; Bouman et al., 2011; Fawcett et al., 2011), it is likely that the 

open ocean was dominated by prokaryotic organisms with eukaryotes perhaps only inhabiting 
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the most oxygenated part of the water column. Nearer shore, a more diverse ecosystem including 

abundant eukaryotes may have developed in relatively nitrate-rich waters. The very shallowest 

peritidal settings may again have excluded eukaryotes, not because of anoxia but due to periodic 

nitrate depletion during intervals of restricted water exchange at low tides. This ecological 

gradient may have also had evolutionary consequences in that eukaryote diversification was not 

possible in offshore and onshore nitrate-poor settings but was instead confined to near-shore 

waters that were relatively nitrate-rich. It is also possible that eukaryotic life was inhibited 

directly by episodic upwelling of anoxic and sometimes sulfidic waters (Johnston et al., 2009); 

these two mechanisms of eukaryotic inhibition are not mutually exclusive and likely both 

occurred.  If so, then perhaps eukaryotes underwent a major evolutionary radiation and rise to 

ecological dominance only after a Neoproterozoic oxygen increase, resulting in globally 

prevalent nitrification and deeper or less widespread anoxic water masses. Thus, our data support 

the hypothesis of Anbar & Knoll (2002) that nitrogen availability may have been a key constraint 

on the evolution of eukaryotes. 

 

6. Conclusion 

 Nitrogen isotope data from the Bangemall and Roper basins, considered in concert with 

the Belt basin (Stüeken, 2013), are consistent with the idea that distinct facies-dependent 

nitrogen regimes (largely aerobic near-shore and partially to fully anaerobic offshore) were a 

common feature in the early Mesoproterozoic. Peak enrichment in δ15Nbulk occurs in shallow and 

peritidal depositional environments and cannot solely be explained by post-depositional 

alteration. There is no apparent systematic cross-basin bias of oxic versus anoxic diagenesis or 

metamorphism, so it is likely that these heavy values reflect the primary isotopic composition of 
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biomass forming in the water column. The most plausible explanation for positive δ15Nbulk values 

in the shallower waters is that a pool of dissolved nitrate was partially denitrified and the residual 

isotopically heavy nitrate was subsequently assimilated into biomass, as in the modern ocean 

(e.g. Sigman et al., 2009a). Instances of light δ15Nbulk in peritidal environments probably 

represent transient periods of isolation from the marine nitrate supply at low tide leaving fixation 

as the primary source of nitrogen. Light δ15Nbulk values in deep water samples are consistent with 

a predominance of N2 fixation by the Mo-Fe nitrogenase; slightly heavier samples likely record 

mixing with biomass from nitrate assimilators during intervals when nitrate was more available 

in the surface ocean, as in parts of the modern redox-stratified Cariaco basin (Montes et al., 

2013). Such mixing implies that nitrate concentrations were low, because any isotopic signal 

from N2 fixation would be erased without a nitrate deficit in the water column (e.g. Fulton et al., 

2012). 

 It is not clear whether the proposed spatial and temporal trends in nitrogen cycling 

indicate reduced concentrations of trace metals, oxygen, or both in deep water environments 

during the Mesoproterozoic where aerobic nitrogen cycling seems to have been limited. Our 

results are consistent with metal-nitrogen co-limitation controlled by the extent of euxinic 

conditions (Anbar and Knoll, 2002; Glass et al., 2009; Reinhard et al., 2013), but probably only 

to a degree that limited nitrification and denitrification offshore while N2-fixation by the Mo-Fe 

nitrogenase was able to persist. Our data are also consistent with a Mesoproterozoic oxygen 

decline (Bekker and Holland, 2012; Planavsky et al., 2012; Partin et al., 2013; Scott et al., 2014), 

as nitrogen isotopic ratios are lower in the Mesoproterozoic than in the Paleo- and 

Neoproterozoic, suggesting relatively lower nitrate concentrations. A basinal gradient of 

dissolved oxygen concentrations (higher near-shore to lower offshore) could potentially also 
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produce the nitrogen isotopic trend seen in our datasets by limiting the extent of nitrification. 

Thus the theoretical prediction of two spatially separated states of the nitrogen cycle in the mid-

Proterozoic (Boyle et al., 2013) is now expressed in three different Mesoproterozoic basins, 

though how much this pattern directly depended on the location and extent of underlying euxinic 

waters is still unclear. Regardless, such patterns would probably have restricted eukaryote 

biomass and evolution to near-shore settings, as hypothesized by Anbar and Knoll (2002), 

though the key limiting factor may not have been nitrogen fixation rates but nitrogen speciation. 
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Figures 

Figure 1: Average nitrogen isotopic composition of bulk marine sedimentary rocks from 

offshore environments. Data are compiled from the literature (see Stüeken et al., 2015 for 
references) and from this study. Each point represents a time-point average, the black solid line 

marks the running mean over three points. Where no basinal gradient is present, all data were 
used. Samples from hydrothermal cherts and amphibolite facies were excluded.  

 
Figure 2: Locations of the Bangemall Supergroup and Roper Group (boxes) and the 

approximate locations of sample collection (dots).  
 

Figure 3: Stratigraphic δ
15

Nbulk plots of Bangemall transects. (A) Fords Creek, (B) Irregully, 
(C) Wandarry. Depositional facies in each panel are as in panel (D), with deep subtidal above the 

top dot-dash line, shallow subtidal in the middle, and peritidal below the bottom dot-dash line. 
Panel (D) is a normalized compilation of all the Bangemall transects where the positions of each 

point are relative to the thickness of the shallow subtidal facies. The red line indicates the 
running mean over three points. 

 
Figure 4: δ15Nkerogen vs. TOC/Nkerogen (total organic carbon / kerogen-bound nitrogen) for 

Bangemall (yellow diamonds) and Roper (black circle) samples. 

 

Figure 5: δ15
Nbulk plotted against δ

13
Corg for the Bangemall (A) and Roper (B) basins. The 

plot also includes those samples from the Bangemall basin that do not belong to one of the three 

main transects shown in Fig. 3A-C. Error bars are ±1σ. 

 
Figure 6: Histogram of Proterozoic offshore δ

15
Nbulk data. (A) Neoproterozoic era (1.0-0.548 

Ga) with data from Ader et al. (2014) and Kikumoto et al. (2014); (B) Mesoproterozoic era (1.6-
1.0 Ga) with data from Stüeken (2013), Luo et al. (2015) and this study; (C) Paleoproterozoic era 

(2.5-1.6 Ga) with data from Busigny et al. (2013), Kump et al. (2011) and Godfrey et al. (2013). 
Subsets of the datasets listed above were taken to only include offshore environments: from Ader 

et al. (2014) the Camil, Carmelo, and Copacel sections from Brazil and all data from Svalbard 
and North Canada. From Kikumoto et al. (2014) all data from the Doushantuo Formation. From 

Stüeken (2013) data from the Newland Formation in Deep Creek. From the Bangemall and 
Roper of this study, “deep” and “basinal” data respectively. From Luo et al. (2015) all data. 

From Busigny et al. (2013) data from the Brockman Iron Formation. From Kump et al. (2011) 
data from above 180 meters in core depth (from 0m to 180m). From Godfrey et al. (2013) data 

from cores MGS-7 and MGS-8. The inset in panel A shows modern marine sediment data from 
Tesdal et al. (2013). The modern data show no correlation with water depth and are therefore not 

separated by facies. Paleoproterozoic data from the Aravalli Group (Papineau et al., 2009; 
Papineau et al., 2013) were excluded because they are of higher metamorphic grade and their 

depositional environment is uncertain.  
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Figure 7: Schematic of the proposed Mesoproterozoic nitrogen cycle. Shown are fluxes (F) 

both in and out of a shallow water nitrate reservoir as we propose for the Bangemall and Roper 
basins. Blue flux arrows represent fluxes that, when varied, are most likely able to change the 

isotopic composition of a relatively small nitrate reservoir. All other fluxes are unlikely to 
change the isotopic composition of the nitrate reservoir. Flux labels are as follows: Ffixation = N2 

fixation flux, Fnitri. = nitrification of organic matter to nitrate, Fassim. = assimilation of nitrate into 
biomass, Fden.wc. = water-column denitrification, Fden.sed. = sedimentary denitrification, Fupwell = 

upwelling of ammonium from anoxic waters. 
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Tables 

Table 1: List of nitrogen cycle steps that induce large isotope fractionation effects and their 

respective fractionation factors. Fractionations are expressed as δ15Nsubstrate – δ15Nproduct. 

References: 1.Zhang et al. (2014), 2. Casciotti (2009); 3. Frey et al. (2014); 4. Brunner et al. 
(2013); 5. Fulton et al. (2012); 6. Fuchsman et al. (2008); 7. Altabet & Francois  (1994); 8. 

Kessler et al. (2014); 9. Sigman et al. (2009a). 

Nitrogen cycle reaction Fractionation factor Ref. Preservation potential 

Nitrogen Fixation  

(N2 � Norg � NH4
+) 

Mo-nitrogenase: 
+2‰ to -1‰ 

Fe- and V- nitrogenase: 
+6‰ to +8‰ 

 
1 

 

Preserved in sediments from 

nitrogen-limited ecosystems [5] 

Ammonium assimilation 
(NH4

+ � R-NH2) 
+14‰ to +27‰ 2 

Not known to be expressed [cf. 
5] (Section 5.2) 

Nitrification (ammonium 
oxidation) 

(NH4
+ � NO2

-) 

 
+14‰ to +38‰ 

 

2 
Quantitative at chemocline [6]; 
not preserved 

Nitrification (nitrite oxidation) 
(NO2

- � NO3
-)  

-12.8‰ 2 
Quantitative at chemocline [6]; 
not preserved 

Nitrate assimilation 
(NO3

- � R-NH2) 
+5‰ to +10‰ 2 

Usually quantitative in photic 
zone [7]; not preserved 

Denitrification  

(NO3
- � N2) 

+10‰ to +30‰ 3 
Non-quantitative in suboxia [8, 
9]; preserved in biomass of NO3

-

assimilators [7] 

Annamox 

(NO2
- + NH4

+ � N2 + 2H2O) 

NO2
-: +16‰ 

NH4
+: +23‰ to +29‰ 

4 
Probably indistinguishable from 

denitrification [4] 
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Table 2: δ15Nbulk values for the Bangemall basin transects and whole basin, the Roper basin, and 
the Belt basin. Belt data are from Stüeken (2013). Parenthetical facies labels are specific to the 

Roper basin. Uncertainties are expressed as ±1σ. n = number of samples. 

 Peritidal (tide-

dominated 

platform) 

δ
15

Nbulk 

Shallow subtidal (storm-

dominated shelf) 

δ
15

Nbulk 

Deep subtidal 

(basinal) δ
15

Nbulk 

Bangemall basin:    

      Fords Creek 3.1‰ ± 1.5‰  

(n=10) 

3.9‰ ± 1.4‰  

(n=12) 

2.7‰ ± 1.6‰  

(n=13) 

      Irregully 

Creek 

3.2‰ ± 2.0‰  

(n=5) 

3.4‰ ± 0.4‰  

(n=6) 

1.1‰ ± 1.1‰  

(n=5) 

     Wandarry 
Creek 

3.8‰ ± 2.5‰  
(n=4) 

3.5‰ ± 1.4‰  
(n=6) 

1.9‰ ± 0.9‰  
(n=4) 

      All 3.3‰ ± 1.8‰ 
(n=18) 

3.4‰ ± 1.4‰ 
(n=26) 

1.8‰ ± 1.6‰ 
(n=28) 

Roper basin: 3.7‰ ±0.8‰ 
(n=6) 

2.3‰ ± 1.3‰ 
(n=20) 

2.0‰ ± 0.8‰ 
(n=8) 

Belt basin: 3.7‰ ± 1.4‰ 
(n=13) 

1.5‰ ± 1.2‰ 
(n=35) 

0.1‰ ± 0.9‰ 
(n=21) 

 

 
 

Table 3: δ13Corg in the Bangemall, Roper, and Belt basins. Parenthetical facies labels are specific 
to the Roper basin. Data from the Jixian basin are taken from Guo et al. (2013). Uncertainties are 

expressed as ±1σ. n = number of samples. 

 Peritidal  

(tide-dominated 

platform) 

δ
13

Corg  

Shallow subtidal 

(storm-dominated shelf) 

δ
13

Corg  

Deep subtidal 

(basinal) 

δ
13

Corg  

Bangemall basin -27.0‰ ± 3.2‰ 

(n=18) 

-29.2‰ ± 2.6‰ 

(n=26) 

-30.2‰ ± 2.9‰ 

(n=28) 

Roper basin -31.5‰ ± 0.9‰  

n=6 

-30.6‰ ± 1.2‰  

n=20 

-32.9‰ ± 1.6‰  

n=8 

Belt basin -32.2‰ ± 1.2‰ 

(n=13) 

-30.1‰ ± 1.9‰ 

(n=35) 

-22.9‰ ± 2.9‰ 

(n=21) 

Jixian basin -28.2‰ ± 1.6‰ 
(n=191) 

-30.8‰ ± 2.0‰ 
(n=61) 

n/a 
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