43 research outputs found

    FRAGMENTATION DYNAMICS OF IONIZED RARE-GAS CLUSTERS: NEW ACHIEVEMENTS

    Get PDF
    D. Bonhommeau, N. Halberstadt and U. Buck, Int. Rev. Phys. Chem. 26F. Calvo, D. Bonhommeau and P. Parneix, Phys. Rev. Lett. 99Author Institution: Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA; LCAR-IRSAMC, Universite Paul Sabatier and CNRS, 118 route de Narbonne, F-31062 Toulouse CEDEX 09, France; Max-Planck Institut fur Dynamik und Selbstoganisation, Busenstr. 10, D-37073 Gottingen, Germany; LCPQ-IRSAMC, Universite Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France; Laboratoire de Photophysique Moleculaire, CNRS Bat. 210, Universite Paris-Sud, F-91405 Orsay, FranceThe fragmentation of rare-gas clusters Rgn_n (2≤n≤142\le n\le 14 and Rg = Ne, Ar and Kr) upon electron-impact ionization has been studied theoretically and compared to experiments}, 353-390 (2007)}. The dynamics of these ionic clusters has been modeled by means of a trajectory surface hopping method, the Tully's Fewest Switches (TFS) method, in which all the relevant electronic states of the ions and their couplings are taken into account. A very good qualitative agreement is found for all types of clusters, concerning the extensive character of the dissociation and the tendency to form larger fragments when the parent ion size increases. For instance, no trimer fragments are found for clusters smaller than the pentamer. In addition, a very good quantitative agreement is obtained for argon clusters. On the other hand, some discrepancies are found between experiment and theory for krypton clusters: the production of monomers seems underestimated in the simulation. Theoretical results also show that the parent ion dissociation occurs within the first picoseconds, and that most of the dynamics is completed within 10 picoseconds. Despite their success, TFS-like and adiabatic dynamics methods are based on classical mechanics and cannot reach experimental time scales, in the microsecond or millisecond range, whereas large clusters may carry on losing atoms after several nanoseconds. This issue was specifically examined on Arn+_n^+ clusters (n=20 and 30): a new method that combines a TFS dynamics for the internal conversion, an electronic ground state adiabatic dynamics and phase space theory (PST) was designed and allows to reach the millisecond time scale}, 083401 (2007)}

    Pulmonary vasculitis due to infection with Mycobacterium goodii : A case report

    Get PDF
    A 57-year-old Caucasian woman suffered from dyspnea on exertion. One year following a supposed pulmonary embolism event, a chronic thromboembolic vasculopathy was diagnosed and a pulmonary thromboendarterectomy was performed. However, a granulomatous pulmonary arterial vasculitis was identified upon examination. DNA of Mycobacterium goodii was detected as the most likely causative agent. Anti-inflammatory and anti-mycobacterial therapy was initiated for more than 12 months. Regular PET-CT scans revealed improvement under therapy. The last PET-CT did not show any tracer uptake following 10 months of therapy

    Total differential cross sections for Ar–CH4 from an ab initio potential

    Get PDF
    Total differential cross sections for the Ar–CH4 scattering complex at ECM=90.1 meV were obtained from converged close-coupling calculations based on a recent ab initio potential computed by symmetry-adapted perturbation theory (SAPT). Agreement with experiment is good, which demonstrates the accuracy of the SAPT potential

    State Selective Scattering Angle Dependent Capture Cross Sections Measured by Cold Target Recoil Ion Momentum Spectroscopy

    Get PDF
    We have developed a new kind of recoil ion momentum spectroscopy technique, using a precooled supersonic gas jet target, to determine state selective, scattering angle dependent cross sections for swift ion-atom collisions ( 0. 25 , ..., , 1 MeV He2+ on He), by measuring the transverse and longitudinal momentum of the recoil ion. A longitudinal momentum resolution of ± 0.13 a. u. was achieved, about a factor of 30 better than ever obtained before, which enables a clear separation of K and L shell capture. In the transverse direction a resolution corresponding to a projectile scattering angle uncertainty of Δ ϑ P = ±1 μ rad was obtained

    Photodissociation of Hydrogen Halide Molecules in Different Cluster Environments

    No full text

    Infrared Spectroscopy of Size-Selected Water and Methanol Clusters. ( Chem. Rev

    No full text
    corecore