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Principle of the Experiment (U. Buck, M. Farnik)
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Theoretical Moddl (1)

e Principle of the model:
(ROn) min a@), RO, @), (Rg;H)* (3), fragments.
(1) ZPE, (2) Vertical lonization (= 70 eV), (3) Dissociation.
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Theoretical Model ()

e Principle of the model:
(RgTL)mzn — Rgn —> (Rgn> - fragments.
, (2) Vertical lonization (=~ 70 eV), (3) Dissociation.
e Rg;" potential-energy surfaces: The Diatomics In Molecules (DIM) model

H:Z Z HAB_(N_2)ZHA
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x Generation of 3n potential-energy surfaces (3 by atom) for Rg;, clusters in the
basis of Rg™ effective p orbitals.

* Method more realistic than pair potentials: a matrix is built, diagonalized and the
charge can therefore be delocalized.

* Method less time consuming than ab initio calculations.
* Method proven to be suitable for rare-gas clusters (except He).

* Method only based on the knowledge of Rg2 and jo potentials but whose
accuracy may be improved (ID-ID interactions, SO coupling).



Theoretical Model (I1)

e Multisurface Dynamics: The Molecular Dynamics with Quantum Transition
(MDQT) method of Tully

*

MDQT, aka MDET (Molecular Dynamics with Electronic Transition) or TFS (Tully’s
Fewest Switches), is a surface-hopping method.

Dynamics performed in the adiabatic representation.

Nuclei are treated classically (Hamilton equation of motion for positions and
linear momenta) and moves on one adiabatic surface at a time.

Electrons (or the hole) is treated quantum mechanically (Schrédinger Equation).

Nonadiabatic transitions, or “hops”, between surfaces j and k governed by a
hopping probability g,z = f(R - d;x, ¢j, k).
Velocities are adjusted at a hopping event to ensure total energy conservation.
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e Results:

* That can be compared to experiments: lonic fragment abundances, cluster
internal energies.

* That cannot be experimentally obtained: parent ion or transient species lifetimes,
neutral fragment abundances, percentage of long-lived trajectories, effect of the
SO coupling.



Art clusters. comparison to experiments
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Circles/Squares: our work without/with SO coupling (2006).

Downward triangles: Buck et al. (1986).
Diamonds: Bastida et al. (1996).

Ref: D. Bonhommeau et al., J. Chem. Phys., 124 (18), 184314 (2006).



Possible source of discrepancies

Heating of the neutral precursor: No, since such a heating has almost no
effect on fragment abundances.

Contribution of long-lived trajectories: No, since they are too rare for n < 9 to
explain the discrepancy to experiment.

Selective ionisation of some highly excited electronic states: No, since a
selective ionization would not lead to as many Ar+ fragments for n = 9 and the
electron-impact ionization cross section of s orbitals is 20 to 30 times lesser than
for p orbitals.

Secondary ionisation of neutral fragments: Possible, since characteristics
times of the dynamics are of the order of the picosecond whereas neutral clusters
remain =~ 1 uS in ionization chamber.

Experimental resolution and/or theoretical approximations: Possible. In
particular, old experiments were found not to be sufficiently resolved.



New investigation of Ar " dissociation
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Our work (2006) and experiment by Buck (2006).

Qualitative and quantitative agreement for all the cluster and fragment sizes.

Extension to krypton and xenon clusters: discrepancies to experiment are much
more marked for krypton and xenon clusters with a propensity to form monomers
(> 90%) that is not theoretically found.

Ref: D. Bonhommeau et al., Int. Rev. Phys. Chem., 26 (2), 353-390 (2007).



Lifetime (ps)

Rg," clusters. parent ion lifetimes
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x Decrease for Ne;", decrease and
increase for Ar;” and Kr;!.
* Kyt minimum for Krd', maximum for Kr;}

and Kr,, local maximum for Kry .
* Origin: symmetry of Kr,, neutral clusters,

small ZPE of these clusters.




Rg," clusters. parent ion lifetimes
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Lifetime (ps)

small ZPE of these clusters.

e Effect of the Spin-Orbit coupling:
* Decrease of lifetimes, especially for highly symmetric parent ions like Krg{.

* Origin: some degeneracies are lifted, so more couplings, faster relaxation, and

smaller lifetimes.



Rg' clusters: long-lived trajectories
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Ne (circles), Ar (squares) and Kr (diamonds) clusters.
without SO coupling (¢;;,, = 100 ps).

without SO coupling but the future of long-lived trajectories is considered
(t1im = 10 NS).
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Multiscale dynamics. The case of Ar;" (n=20-30)

e Method:
1. Nonadiabatic dynamics (TFS method) for the internal conversion (t ~ 1 ps).
2. Molecular dynamics (MD) on the ground electronic state (¢t ~ 1 to 100 ps).

3. Phase Space Theory (PST) to model the production of monomers (¢t ~ 1 ms),
collaboration with F. Calvo and P. Parneix.
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Multiscale dynamics. The case of Ar;" (n=20-30)

e Method:
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Ref: F. Calvo et al., Phys. Rev. Lett., 99 (8),083401 (2007).



Conclusion

e The DIM/MDQT model used for rare-gas clusters allows to

* Find several results in qualitative agreement with experiments (extensive
fragmentation, n value for the appearance of the first trimer fragments, etc...),
and even in quantitative agreement for argon clusters.

* Predict some results not experimentally reachable (parent ion lifetimes, effect of
long-lived trajectories).

* Model the internal conversion in multiscale fragmentation models that can be
applied to large clusters and whose results can be directly compared to
experiments.

e Future work

* More carefully studying discrepancies between theory and experiments obtained
for Kr and Xe clusters.

* Using the multiscale model for other systems, other kind of excitation
(photoionisation), etc ...
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