149 research outputs found

    Self-consistent anisotropic oscillator with cranked angular and vortex velocities

    Full text link
    The Kelvin circulation is the kinematical Hermitian observable that measures the true character of nuclear rotation. For the anisotropic oscillator, mean field solutions with fixed angular momentum and Kelvin circulation are derived in analytic form. The cranking Lagrange multipliers corresponding to the two constraints are the angular and vortex velocities. Self-consistent solutions are reported with a constraint to constant volume.Comment: 12 pages, LaTex/RevTex, Phys. Rev. C4

    Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers

    Get PDF
    Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways

    Nano-scale morphology of melanosomes revealed by small-angle X-ray scattering

    Get PDF
    Melanosomes are highly specialized organelles that produce and store the pigment melanin, thereby fulfilling essential functions within their host organism. Besides having obvious cosmetic consequences – determining the color of skin, hair and the iris – they contribute to photochemical protection from ultraviolet radiation, as well as to vision (by defining how much light enters the eye). Though melanosomes can be beneficial for health, abnormalities in their structure can lead to adverse effects. Knowledge of their ultrastructure will be crucial to gaining insight into the mechanisms that ultimately lead to melanosome-related diseases. However, due to their small size and electron-dense content, physiologically intact melanosomes are recalcitrant to study by common imaging techniques such as light and transmission electron microscopy. In contrast, X-ray-based methodologies offer both high spatial resolution and powerful penetrating capabilities, and thus are well suited to study the ultrastructure of electron-dense organelles in their natural, hydrated form. Here, we report on the application of small-angle X-ray scattering – a method effective in determining the three-dimensional structures of biomolecules – to whole, hydrated murine melanosomes. The use of complementary information from the scattering signal of a large ensemble of suspended organelles and from single, vitrified specimens revealed a melanosomal sub-structure whose surface and bulk properties differ in two commonly used inbred strains of laboratory mice. Whereas melanosomes in C57BL/6J mice have a well-defined surface and are densely packed with 40-nm units, their counterparts in DBA/2J mice feature a rough surface, are more granular and consist of 60-nm building blocks. The fact that these strains have different coat colors and distinct susceptibilities to pigment-related eye disease suggest that these differences in size and packing are of biological significance

    New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility

    Get PDF
    The results of background measurements with the second version of the BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso Underground Laboratory, were used to obtain limits on the instability of nucleons, bounded in nuclei, for decays into invisible channels (invinv): disappearance, decays to neutrinos, etc. The approach consisted of a search for decays of unstable nuclides resulting from NN and NNNN decays of parents 12^{12}C, 13^{13}C and 16^{16}O nuclei in the liquid scintillator and the water shield of the CTF. Due to the extremely low background and the large mass (4.2 ton) of the CTF detector, the most stringent (or competitive) up-to-date experimental bounds have been established: τ(n→inv)>1.8⋅1025\tau(n \to inv) > 1.8 \cdot 10^{25} y, τ(p→inv)>1.1⋅1026\tau(p \to inv) > 1.1 \cdot 10^{26} y, τ(nn→inv)>4.9⋅1025\tau(nn \to inv) > 4.9 \cdot 10^{25} y and τ(pp→inv)>5.0⋅1025\tau(pp \to inv) > 5.0 \cdot 10^{25} y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.

    Race, the Vaginal Microbiome, and Spontaneous Preterm Birth

    Get PDF
    Previous studies have investigated the associations between the vaginal microbiome and preterm birth, with the aim of determining whether differences in community patterns meaningfully alter risk and could therefore be the target of intervention. We report on vaginal microbial analysis of a nested case-control subset of the Pregnancy, Infection, and Nutrition (PIN) Study, including 464 White women (375 term birth and 89 spontaneous preterm birth, sPTB) and 360 Black women (276 term birth and 84 sPTB). We found that the microbiome of Black women has higher alpha-diversity, higher abundance of Lactobacillus iners, and lower abundance of Lactobacillus crispatus. However, among women who douche, there were no significant differences in microbiome by race. The sPTB-associated microbiome exhibited a lower abundance of L. crispatus, while alpha diversity and L. iners were not significantly associated with sPTB. For each order of magnitude increase in the normalized relative abundance of L. crispatus, multivariable adjusted odds of sPTB decreased by approximately 20% (odds ratio, 0.81; 95% confidence interval, 0.70, 0.94). When we considered the impact of douching, associations between the microbiome and sPTB were limited to women who do not douche. We also observed strong intercorrelations between a range of maternal factors, including poverty, education, marital status, age, douching, and race, with microbiome effect sizes in the range of 1.8 to 5.2% in univariate models. Therefore, race may simply be a proxy for other socially driven factors that differentiate microbiome community structures. Future work will continue to refine reliable microbial biomarkers for preterm birth across diverse cohorts

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
    • …
    corecore