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INTRODUCTION 

Many archaeologists are familiar with Bayesian statistics in the context of radiocarbon date 

calibration and chronology building. However, the Bayesian framework has broader applications 

beyond dating and chronology that are worthy of consideration by archaeologists. For example, 

many researchers in the natural and social sciences are using Bayesian statistics to evaluate how 

well observational or experimental data align with their hypotheses. For the most part, this use of 

Bayesian inference has not been applied to archaeology. Using a fictional zooarchaeological 

example, this paper provides a straightforward explanation of Bayesian inference and compares it 

to the more conventional null hypothesis significance testing (NHST). Although some have 

previously described and reviewed the application of these concepts elsewhere (e.g., Buck 2001; 

Buck, et al. 1996; Buck and Meson 2015; Otárola-Castillo, et al. 2022; Otárola-Castillo and 

Torquato 2018; Wolfhagen 2019, 2020), this work is focused on presenting replicable step-by-step 

examples of the Bayesian framework for evaluating and discerning among competing hypotheses.  

Uncertainty and probability in archaeological applications 

All data are uncertain. Measurements and observations are not exact, and their resulting 

values are variably imprecise. Archaeologists routinely use statistical quantities such as variance, 

standard deviation and standard error, which rely on probability theory to describe this uncertainty. 

In their field and lab work, archaeologists regularly use equipment that relies on probabilistic 

descriptions of uncertainty. For example, the manufacturer of total stations, widely used to map 

archaeological sites, has stated accuracies of 2 mm plus an additional 2 mm per km, usually at the 

1 sigma standard deviation level (e.g., Leica TS16). This is an example of a probability concept 

used to measure "random" uncertainty. In this case, assuming a "normal" probability distribution 

for the measurement error (although the manufacturer does not specify this), archaeologists should 

expect that 68% of the locations of artifacts mapped by this instrument will have an error up to ± 

2 mm, plus error related to increasing distance (and error due to atmospheric conditions, instrument 

stability, etc. (Walker and Awange 2020)). Similarly, the manufacturer's specification sheet for a 

typical Ohaus (Scout STX2202) portable digital scale claims to measure up to 2,200 g, with an 

error of ± 0.02 g (1 sigma). Like total stations, if we assume a normal error model, this means that 

the manufacturer certifies that 68% of all readings will be within ±0.02 g of the true reading under 

ideal circumstances.  

 Similarly, after careful data collection and analyses, archaeologists also apply the concept 

of probability to test their hypotheses. These are formal statements that offer plausible explanations 

of the observed patterns of people or their environment in the past. Like the statements about field 

and laboratory instrument measurements, these hypotheses and their predictions also possess some 

degree of uncertainty due to incomplete observation or knowledge. To formally quantify 

uncertainty about data and hypotheses, archaeologists frequently rely on specific probability 

models or probability functions (i.e., equations). The inputs of a probability function are observed 

or hypothesized values, and the outcomes are their probabilities ranging from zero to one, i.e., 

from least to most probable. Archaeologists use this probabilistic system to test their hypotheses 

and describe the degree of uncertainty with which their hypotheses account for current and likely 

future observations. Using a probabilistic approach gives archaeologists a powerful and systematic 

tool that makes it possible to interpret data and evaluate hypotheses.  

Manuscript Body Click here to access/download;Manuscript
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Below, we provide an overview of the central concepts of the two major probability paradigms to 

evaluate hypotheses: NHST and Bayesian inference. Whereas most scientists widely use NHST, 

the Bayesian approach is considered a modern data-driven learning system that has enjoyed 

increasing application to archaeology (Buck, et al. 1996, 2015 #205; Howson and Urbach 2006; 

Jaynes 2003; Otárola-Castillo, et al. 2022; Otárola-Castillo and Torquato 2018). 

Null hypothesis significance testing 

As the prevailing statistical framework in most sciences, NHST enables practitioners to 

use their data to evaluate hypotheses. This approach is rooted in the early 20th-century 

development of goodness of fit tests (R. A. Fisher 1922; Pearson 1900), experimental design, p-

values (R. A. Fisher 1925, 1935), confidence intervals (CIs) and hypothesis testing (Neyman and 

Pearson 1933: 294). This methodology was introduced to archaeology in the mid-20th century 

(e.g., Binford 1964; Clarke 1968; Myers 1950; Spaulding 1953; Vescelius 1960). Applications of 

NHST in archaeology continue today, supported by new archaeology-specific statistical textbooks 

(e.g., Banning 2020; Baxter 2003; Carlson 2017; Drennan 2010; Fletcher and Lock 2005; McCall 

2018; Shennan 1997; Thomas 1986). These textbooks provide detailed treatment of NHST and its 

procedures in the context of archaeology (for a multidisciplinary introductory textbook to NHST 

see for example, Diez et al., 2019).  

In general, however, the NHST paradigm revolves around the concept of theoretically 

repeated sampling over the long term and the Central Limit Theorem (CLT; Diez et al., 2019: 172). 

The CLT informs NHST's approach to hypothesis description and evaluation. The theorem shows 

that given a large enough sample, in many cases, the summary statistics (e.g., mean or standard 

deviation) will follow a normal distribution. For instance, after sampling the same population 

multiple times, the means of individual samples will be normally distributed. This distribution is 

known as the sampling or "null" distribution of the statistic. Because this phenomenon occurs 

often, even if the original variable was not normally distributed, this concept applies to many 

situations and data. The CLT further links sample statistics to their null distributions, such as the 

mean, through its standard error. According to the CLT, the standard error of a sample's mean 

estimates the standard deviation of the mean's null distribution. One may compute this quantity by 

dividing the sample's standard deviation by the sample's size. 

The CLT is helpful to archaeologists who often sample from a target population—a group 

of individuals, artifacts, events, measurements or other phenomena that they wish to study. The 

aim is to use the sample to test a priori hypotheses about quantifiable characteristics of the sampled 

population. Statisticians refer to these characteristics as the population parameters. For example, a 

population's mean and standard deviation parameters represent its central tendency and variability, 

respectively. Sample statistics function as estimates of the population parameters and are thus also 

known as the parameter estimates. These statistics are used to test hypotheses about their 

respective population parameters. NHST requires archaeologists to state only two hypotheses: a 

null and an alternative hypothesis to evaluate. Null hypotheses are quantitative statements of "no 

difference" (difference = 0) between a hypothesized parameter value and its sample statistic, or 

between a sample statistic and its counterpart from another sample. Archaeologists often set up 

such null hypotheses to evaluate whether a sample statistic resulted from a population having the 

hypothesized parameter value (i.e., a one-sample test). Alternatively, they may wish to know if the 

statistics from two independent samples were drawn from the same population (i.e., a two-sample 

test). 
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Alternative hypotheses are ordinarily simple statements negating the null hypothesis. Once 

archaeologists state the null and alternative hypotheses, they then sample the population or "collect 

data," and calculate the sample statistics. We should point out that the NHST framework proceeds 

by assuming that the null hypothesis is true and then using the sample data, summarized by a 

statistic, to test that assumption. To do so, archaeologists use the sample statistic to define a test 

statistic (frequently the z-, t-, F-ratios, and chi-square values; e.g., Diez et al., 2019, Thomas 1986, 

Drennan 1996:177) and calculate the probability that a value equal to or more extreme than the 

test statistic can occur under the assumption of the null hypothesis.  

The probability of the test statistic, or p-value, is often calculated with the help of 

probability distribution models, like the normal distribution. These probability models are also 

known as likelihood functions. The likelihood is a statistical function that describes the probability 

of the test statistic dependent on the hypothesized parameter values, e.g., those assumed by the

null hypothesis. For instance, as we show in the fictitious example below, the normal likelihood 

function is used to compute the p-value of a z-ratio test statistic, assuming the null hypothesis is 

true. Using similar probability models, archaeologists conduct NHST and calculate quantities such 

as p-values and confidence intervals (CIs) to evaluate whether the test statistic rejects or fails to 

reject the null hypothesis. 

CIs are grounded in the CLT's null distribution concept. Archaeologists often compute CIs 

in two contexts: 1) to conduct NHST, they calculate the CIs of a test statistic, and 2) to estimate 

the precision of a parameter estimate, they compute the CIs of a sample statistic. Generally, the 

CIs of either the test or sample statistic, are centered on their mean, represent their respective null 

distribution and are derived using their sample's standard error. Recall that the standard error of 

either statistic is the standard deviation of its null distribution. For the sample statistic, this 

distribution represents the range of plausible values within which one may find the true value of 

the population parameters. 

In the context of the test statistic, however, the CI is the range of possible values within 

which the true difference, assumed by the null hypothesis, will be found. In other words, due to 

the CLT, ~68% of the test statistic's null distribution will capture the true value of the difference, 

assumed to be zero by the null hypothesis. Likewise, in the case of a sample statistic, 68% of its 

null distribution will contain the true value of the population parameter. Alternatively, one may 

wish less uncertainty than 68% for the sample or test statistic. In this case, one may compute ranges 

similar to the standard error that capture the true parameter or difference values 95%–99% of the 

time—again, after theoretically repeated sampling. These ranges are the CIs, and we refer to them 

in terms of their percentage: e.g., as 95% or 99% CIs. In the context of NHST, archaeologists use 

the CIs of the test statistic to reject or fail to reject a null hypothesis. If the value of no difference, 

0, is within the test statistic's CI, then the null hypothesis fails to be rejected. However, if 0 is not 

within the test statistic’s CI range, the null hypothesis is not supported by the data and is rejected 

in favor of the alternative. We offer one last note about the mechanics of CIs. It may seem tempting 

to interpret the 95% CI as indicating that the true population parameter or difference has a 0.95 

probability of being in the CI. Although somewhat confusing, however, the correct interpretation 

of the CI is that, based on repeated sampling over the long term, 95% of the CIs will contain the 

true population parameter or difference. 

In addition to CIs, NHST uses p-values as an empirical signal of the plausibility of the test 

statistic, assuming the null hypothesis is true. Archaeologists compute p-values by calculating the 
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proportion of values in the null distribution equal to and more extreme than the sample's test 

statistic. Typically, test statistic values with a p-value less than or equal to a proportion of 0.05 (1 

out 20 or 5%) are considered extreme. Archaeologists commonly judge whether to reject or fail to 

reject the null hypothesis using a p-value of 0.05 as a cut-off for rejection: the more extreme the 

data, the smaller the p-value.  

The broader scientific community has become increasingly critical of NHST (e.g., Gelman 

2006; Gelman 2018; Vidgen and Yasseri 2016). Statisticians have strongly pointed out the 

arbitrariness of the 0.05 p-value threshold for statistical significance (Cowgill 1977:352; Valeggia 

and Fernández-Duque 2022; Wasserstein, et al. 2019). Some argue that inadequate statistical 

training may lead researchers to misunderstand p-values (Hubbard 2011:2624; McShane and Gal 

2015). One consequence of not fully understanding the concept of p-values, for instance, is that 

some researchers confuse practical significance, or relevance, with statistical significance. In 

particular, it is possible for effects that are practically negligible, irrelevant or uninteresting to

result in small p-values (e.g., Aarts, et al. 2012; Johnson 1999; Kramer, et al. 2016; McCall 

2018:90-93; Wolverton, et al. 2016). In one case, while investigating the effects of sibling 

competition on the growth patterns of Maya children, Kramer et al. (Kramer, et al. 2016) found 

that the effects of family size on child growth were statistically significant but “of little 

consequence to early childhood health or fitness”. Here, interpreting the 0.05 p-value cutoff as 

demographically important would have led to incorrect conclusions. 

In other cases, researchers have confused p-values for the Type-I error rate, α. The p-value 

is the probability that the test statistic may occur under the null hypothesis; α is the probability of 

rejecting the null hypothesis when it is true (Hubbard 2011). Historically, these two statistical 

quantities belong to competing NHST philosophies (Fisher 1925; Neyman and Pearson 1933). 

Neyman and Pearson developed the concept of Type-1 error in the context of designing infinitely 

repeatable experiments, wherein α defines the probability that an analysis will fail to find a 

difference between two hypotheses when there is a genuine difference. Fisher’s p-value, by 

contrast, empirically estimates if a specific set of observations fit a specified null hypothesis. These 

two quantities have completely different theoretical underpinnings and relationships to actual 

observations. For example, α is unrelated to observations, and the p-value is not influenced by the 

alternative hypotheses under consideration. Typical NHST practice, unfortunately, can lead 

researchers to directly associate the two concepts, complicating efforts to provide reasonable 

definitions and interpretations (Hubbard and Bayarri 2003). The misuse of p-values and statistical 

significance, due to either misunderstanding (e.g., Thiese, et al. 2015) or intention (Chuard, et al. 

2019; Head, et al. 2015), can lead to the so-called scientific replication crisis (Ioannidis 2005), 

which is beginning to reach archaeological science (Bayliss and Marshall 2019; Marwick 2017; 

McPherron, et al. 2021). 

 Even accounting for these nuances, the interpretation of NHST concepts such as p-values, 

statistical significance, hypothesis testing and CIs is not entirely straightforward. Statements about 

sample statistics—standard errors and CIs—are based on hypothetical repeated sampling, which 

is difficult to conceive of in non-experimental situations or, as in archaeology, where true 

replication is hard or even impossible to achieve. In terms of evaluation, although most researchers 

might generally understand how to interpret a significant p-value in the context of rejecting a null 

hypothesis, the meaning of a non-significant p-value may cause confusion. This confusion might 

be exacerbated by the fact that there is no mechanism for “accepting” or “verifying” a null 
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hypothesis. This critical misunderstanding of NHST may lead some to interpret a non-significant 

p-value as accepting their null hypothesis rather than failing to reject it (Greenland, et al. 2016). 

However, knowledge production in the NHST paradigm is centered on rejecting null hypotheses, 

rather than accepting the null or alternative hypotheses. To be fair, the NHST language is

confusing. For example, stating that a null hypothesis failed to be rejected is a triple-negative, 

meaning that “the hypothesis of no difference was not not-accepted.” Such convoluted language 

embedded in NHST obfuscates the relationship between the p-value, null and alternative 

hypotheses.  

Moreover, the role of the alternative hypothesis and its connection to the p-value are also 

unclear and often incorrectly interpreted (Benjamin and Berger 2019; Cohen 1994). As a result, 

inference using traditional NHST statistics can be difficult, especially when a study wishes to 

discern among multiple working hypotheses (e.g., Chamberlin 1965; Gelman, et al. 2012), for 

example, when two or more hypotheses fail to be rejected. In theory, such hypotheses are 

consistent with the data. However, ranking multiple unrejected null hypotheses is difficult, if not 

impossible. One way to rank them may be to use the hypotheses' p-values. After all, the p-value is 

a continuous metric mediating hypothesis rejection and failure-to-reject. However, statisticians 

discourage this procedure (Hubbard and Lindsay 2008; McShane et al., 2019) because the 

magnitude of the p-value does not reflect the weight of evidence of one hypothesis over another. 

Consequently, traditional NHST does not offer a straightforward procedure for further comparing 

"unrejected" null hypotheses. 

Bayesian statistics 

Bayesian inference offers an alternative approach with several advantages over NHST. 

First, Bayesian statistics enables scientists to use data to assign probabilities to their parameter 

estimates and hypotheses, facilitating a more straightforward comparison of competing 

hypotheses. Second, while NHST uses only new data to make inferences, a Bayesian framework 

allows both new data and existing information to be combined. As we detail below, this 

characteristic more closely resembles scientists’ decision making processes and is likely one of the 

key reasons that scientists, including anthropologists and archaeologists, are increasingly adopting 

Bayesian inference to evaluate their hypotheses.  

Bayes’ theorem derives its name from the Reverend Thomas Bayes (1763), an English 

Presbyterian minister and mathematician who researched problems in probability that involved 

conditional and prior probabilities (defined below). However, it was not until the late 1900s that 

the Bayesian approach to statistical inference was popularized in science (Bellhouse 2004). 

Although archaeologists notably began adopting Bayesian statistics to assess hypotheses in the 

1990s (e.g., Buck, et al. 1996; Cowgill 1993), earlier applications can be found scattered 

throughout the archaeological literature beginning in the 1970s (Doran, et al. 1975; D. C. Fisher 

1987; Freeman 1976; Salmon 1982:51-55; Thomas 1986). Today, scientists, including 

anthropologists and archaeologists who find this approach advantageous, are increasingly applying 

Bayesian statistics to evaluate their hypotheses with data (Gelman, et al. 2020; McElreath 2020; 

Naylor and Smith 1988; Otárola-Castillo and Torquato 2018).  

One advantage of Bayesian inference is that it enables expert, or prior, information about 

hypotheses to be incorporated into statistical analyses. As we show in our example below, the prior 

knowledge of an archaeologist or collection of archaeologists and other experts can be very 
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valuable as “we depend very much on prior information to help us in evaluating the degree of 

plausibility in a new problem” (Jaynes 2003:6). Formally including previous experience or expert 

information into statistical analyses to “update” one’s state of knowledge is a natural learning 

process and improves the inferences made by NHST (Cowgill 2001). To accomplish this, 

practitioners of Bayesian inference convert prior knowledge into prior probabilities and use them 

and their distributions as part of statistical analyses. Once analysts determine their prior probability 

distributions, as with NHST, they can observe new data to test their hypothesis (or hypotheses). In 

this context, the likelihood of the data is combined with (or weighted by) the prior to give the 

Bayesian posterior probability. The posterior is the probability of the hypothesis given the 

observed data’s likelihood and prior knowledge (Buck, et al. 1996). As we discuss in more detail 

below, the Bayesian process is particularly helpful in situations where only small amounts of data 

are obtained, as is often the case in archaeology. 

In simple cases, determining the posterior and its distribution is relatively straightforward. 

However, the calculus underlying more complex cases is impossible to solve without the 

application of novel simulation methods. In particular, the Markov Chain Monte Carlo (MCMC) 

algorithms has facilitated progress in Bayesian analyses. MCMC simulation is a combination of 

Monte Carlo sampling and Markov Chains. Monte Carlo sampling is used to estimate difficult to 

compute quantities from the unknown distribution of an observed random variable. Markov Chains 

are a stochastic series of events associated with one another, where the probability of a new event 

is dependent only on the state of the last event. Together, these characteristics of Monte Carlo 

sampling and Markov Chains are essential to find the posterior probability distribution of complex 

problems. Today, variations on the original MCMC algorithm (Metropolis, et al. 1953), such as 

the Metropolis-Hastings, Gibbs, Hamiltonian, and other methods, are now in widespread use, 

facilitating broad application of the Bayesian paradigm (e.g., Dunson and Johndrow 2020; Gilks, 

et al. 1995; Howson and Urbach 2006:xi; Robert and Casella 2011). 

To further contextualize the application of Bayesian statistics, we provide a fictional 

example that illustrates how one can use this probabilistic framework to solve an idealized 

archaeological research problem. To do this, we choose to use a parablea rather than a real case 

study in order to avoid the complexities of site formation processes and sampling bias. The 

contrived, fictional example in this parable also helps focus attention on specific aspects of 

Bayesian inference, which we feel are most instructive. The parable of the “Monico Culture and 

the Bayesian Archaeologist” demonstrates how inferences can be made using data and prior 

information about a hypothesis, how to evaluate the uncertainty surrounding a hypothesis, why 

this approach seems less ambiguous than NHST, and thus, why it is becoming increasingly 

popular. 

THE MONICO CULTURE: A SIMPLIFIED APPLICATION OF BAYESIAN 

STATISTICS 

The “Monico culture” is a fictitious group of people who might have lived anywhere in the 

world between the ethnographic present and a long time ago. A famous Bayesian archaeologist, 

                                                 
aThis example was inspired by creative works similar to Neil Thompson’s (1972) The Mysterious Fall of the 

Nacirema, Kent Flannery’s The Early Mesoamerican Village (1976) and The Golden Marshalltown (1982), and John 

Shea’s Uwasi Valley Tales from “Prehistoric Stone Tools of Eastern Africa: A Guide” (2020).  
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an authority on the Monico, has excavated a post-contact period site associated with this culture. 

Excavation work at the site, named Monico-1, has yielded an impressive faunal assemblage among 

the widely diverse material culture. The archaeofauna is composed of two species of animals: 

“dog” and “coyote.” Individual animals of both species are represented by complete skeletons. 

Consequently, in this report, the archaeologist uses the term “individual” to refer to complete dogs 

or coyotes. Likewise, when the archaeologist mentions “the number of” dogs or coyotes, they 

mean a count of complete individuals of the respective species. So far, the archaeologist has

identified 100 such individuals and assigned them to their respective species. Based on the 

observations, the assemblage is composed of 71 dogs and 29 coyotes. However, the archaeologist 

has also excavated a bone fragment that is difficult to identify. The archaeologist wishes to know 

the most probable species to which this fragment belongs.  

The archaeologist defines “probability” as the relative frequency or proportion of times 

that an event occurs. On the basis of the data alone, the probability (P) of dog remains in the 

assemblage is:  

P(Dog) = 
71

100
= 0.71, 

whereas the probability of coyote remains is:  

P(Coyote) = 
29

100
= 0.29. 

Given these probabilities, it is reasonable for the archaeologist to believe that the 

unidentifiable bone specimen is more likely to be from a dog. However, the archaeologist is 

skeptical. Moreover, as a Monico scholar, the archaeologist has ethnographic details on the 

Monico people’s behavior, particularly on their eating taboos. Historical accounts reveal that the 

Monico once maintained hunting dogs in their villages to hunt coyotes. Because the Monico’s

traditional subsistence base depended on coyote hunting, dogs developed special relationships with 

their owners. Consequently, the Monico came to treat their dogs respectfully, as they would other 

people.  

Oral histories passed down over generations have documented that dogs were thought to 

be a close sibling of people. Notably, the Monico culture is known to have had taboos against 

killing or eating dogs. However, oral histories have also revealed that the Monico did eat dogs 

during times of severe food scarcity. With this additional or “prior” information, the archaeologist 

decides to observe the skeletons more closely to check for the presence of butchery marks (i.e., 

cut marks) on the dog remains. The archaeologist tabulates this additional information on the 

recovered bones under two butchery conditions: 1) butchery marks are present, and 2) butchery 

marks are absent. Table 1 shows the frequencies of butchery marks on the skeletons of each 

species. 
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Table 1. Frequencies of individual animals and observed butchery marks at Monico 1. Note 

that while most of the butchery marks are on coyote bones, 9 of the 71 dog bones also show 

signs of butchery. 

  Individuals of each species  

 

 Dog Coyote 

Total butchery 

marks 

Butchery 

marks  

Present 9 23 32 

Absent 62 6 68 

 Total 

individuals 71 29 Total = 100 

 

To convert these data into a probability table, the archaeologist standardizes (or divides) 

all of the values by the total number of observations (100 in this case). The inner cells (dark font, 

light shading) in Table 2 provide the probabilities of butchery marks and species occurring 

together, or jointly, which are thus known as joint probabilities. 

Table 2. Joint probabilities of individual animals and observed butchery marks, which describe 

the probability of identifying a species and observing butchery marks on the bones of that 

species; for example, 𝑃(𝐶𝑜𝑦𝑜𝑡𝑒 𝑎𝑛𝑑 𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) is 0.23, or 23%. 

 Individuals of each species 

 

  P(Dog)  P(Coyote) 

Marginal 

butchery marks 

Butchery 

marks  

P(Present) 0.09 0.23 0.32 

P(Absent) 0.62 0.06 0.68 

 Marginal 

species 0.71 0.29 Total = 1 

 

The values in the right and bottom margins of Table 2 are suitably named marginal 

probabilities. These represent the presence and absence of butchery marks (on the right) and the 

species identified (bottom). The marginal totals are the total probabilities of each subsetted space 

(species or butchery mark). By definition, all probabilities lie in the range of 0 to 1, and the total 

sum of the marginal rows or columns (i.e., the sum over all marginal outcomes) must be 1.  

At this point, the archaeologist focuses on the unidentifiable bone specimen and finds 

several butchery marks on it. The archaeologist can use this additional information to gain an 

inferential advantage by accounting for, or conditioning on, the presence of butchery marks—a 
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process called conditioning. The archaeologist conditions the species identified on the presence or 

absence of butchery marks. This procedure is otherwise known as subsetting or stratifying the 

variable “species identified” by the presence or absence of butchery marks. 

Naturally, the archaeologist asks, “What is the probability that the unidentifiable bone 

specimen is from a dog compared to the probability that it is from a coyote, given that butchery 

marks are present on the bones of the individual?” The archaeologist observed 32 animals from 

Monico-1 with butchery marks present. Of those, butchery marks were present on 9 dogs and 23 

coyotes. The archaeologist can thus calculate the probabilities of the individual belonging to one

species or the other, given that butchery marks are present (statisticians use the “|” symbol to mean 

“given that” and to signify that conditioning is taking place). For a dog, the probability is: 

P(Dog | Butchery mark present) = 
9

32
= 0.28, 

whereas the probability that an individual with butchery marks belongs to the coyote species is:  

P(Coyote | Butchery mark present) = 
23

32
= 0.72. 

Therefore, after observing butchery marks on the individual (unidentified) bone, the archaeologist 

can state that the probability is 0.72 that it came from a coyote. In other words, they are 72% 

certain that the bone came from a coyote. 

A few days later, a local newspaper reporter became aware of an ongoing archaeological 

excavation at another Monico village site nearby, named Monico-2. Sources reveal to the reporter 

that the excavators there are also recovering faunal remains. Because the archaeologist is a well-

known expert on the Monico’s eating habits, the reporter contacts the archaeologist and

communicates the fact that the new faunal assemblage at Monico-2 is wholly composed of remains 

from dog species.  

Even though the investigators at Monico-2 have not yet conducted a thorough faunal 

analysis, the reporter asks the archaeologist how likely it is that the Monico were butchering and 

eating dogs at the new site. By now, the archaeologist has estimated the probabilities of finding 

butchery marks associated with each animal species based on experience at the Monico-1 village. 

To make a probabilistic inference about behavior at the new site, the archaeologist conditions on 

the “species identified” instead of on the “presence of butchery marks.” Out of the 71 dogs 

identified at Monico-1, the archaeologist observed 9 with butchery marks and 62 without. This 

means that, based on the evidence from Monico-1, the probability of finding evidence of butchery 

on dogs is: 

P(Butchery mark present | Dog) = 
9

71
= 0.13, 

whereas the probability of no butchery evidence on dogs is:  

P(Butchery mark absent | Dog) = 
62

71
= 0.87. 

After a moment’s thought, the archaeologist tells the reporter that (based on knowledge 

from Monico-1) the probability of the dog bones from Monico-2 having resulted from dietary 

activities is relatively low at around 13%. This calculation draws on Bayes’ theorem, as well as 
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on the information regarding the Monico’s relationship with their dogs and the butchery practices 

at Monico-1. 

WHAT IS BAYES’ THEOREM 

Bayes’ theorem is the algebraic formalization of the probabilistic table work that we 

conducted in the previous section using a discrete event. The theorem is most useful when a 

conditional probability statement is known and one wishes to obtain its inverse conditional 

statement. For example, from the previous model, we know that P(Butchery mark present | Dog) 

= 0.13. If we wish to know the inverse conditional statement P(Dog | Butchery mark present), we 

can calculate it using: 

P(Dog | Butchery mark present) = 
𝑃(𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 | 𝐷𝑜𝑔) × 𝑃(𝐷𝑜𝑔)𝑃(𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

. 

Tables 1 and 2 provide the necessary values to plug into this expression so that: 

P(Dog | Butchery mark present) = 
(
0.090.71) × (0.71)

0.32
 = 0.28. 

When generalized, the algorithm applied here is known as Bayes’ theorem. It is usually 

exemplified by considering two related events: A and B. Simply put, Bayes’ theorem states that: 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) × 𝑃(𝐴)𝑃(𝐵)

. 

In this case, to obtain the conditional probability of A given B, P(A|B), one needs to divide the 

joint probability of A and B, P(A and B), by the marginal probability of B, P(B). The product of 

P(B|A) and P(A) is the joint probability, P(A and B). The formula then generalizes to: 𝑃(𝐴|𝐵) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)𝑃(𝐵)

, 

where the joint probability is divided by the marginal P(B). Statisticians call P(A|B) the posterior 

probability of A given B; P(B|A) the inverse conditional (or likelihood) of B given A; and P(A) the 

prior probability of A. 

The Bayesian archaeologist continued 

After a few days, the reporter acquires more information from the continued excavations 

at the Monico-2 village. The frequencies and joint probabilities are described in Tables 3 and 4 

below. The reporter is quite excited to inform the archaeologist that excavators had recovered 10 

dogs, all but one of which had butchery marks on them. By contrast, the archaeologists at the 

Monico-2 site had recovered only one coyote that exhibited butchery marks on the remains. The 

researchers at Monico-2 used an appropriate NHST test statistic, the one-sided z-test for 

proportions (Diez et al., 2019: 194-197), with continuity correction, to test whether the observed 

dog butchery rate (9/10) was statistically significantly greater than 50%—the default null 

hypothesis in this test. The Monico-2 archaeologists rejected the null hypothesis with a p-value < 

0.05 (z-ratio = 2.21, mean = 5, sdev =1.58, p = 0.013). Because of the small sample size, they also 

conducted a one-sided binomial test, which yielded results in line with the z-test results (successes 

= 9, trials = 10, p = 0.01074). Based on these statistically significant results, the Monico-2 
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archaeologists told the reporter that the majority of dogs were butchered at the site. Moreover, 

according to the reporter, the archaeologists also suggested that the evidence and results of the 

statistical analysis indicated that the people at the Monico-2 village included dogs as an important 

part of their diet. In light of this evidence, the reporter begins to question the ethnographic record 

on the dietary taboos of the Monico.  

The archaeologist at Monico-1 has a quick look at the tables, does a few calculations, and 

maintains that the probability of the Monico-2 villagers having butchered their dogs is now even 

lower, especially compared to the new probability of coyote butchery, which is slightly higher. 

The archaeologist insists on waiting for a larger sample before drawing firm conclusions, however. 

Incredulous, the reporter asks for an explanation as to why the archaeologist questions the 

significant null hypothesis tests conducted by the Monico-2 archaeologists. The archaeologist 

looks at the reporter and says, “Well, NHST procedures like the z-test only consider new data. 

These methods, unfortunately, do not account for all available information, new and prior, about 

Monico subsistence. Personally," the archaeologist continues, "I try not to form my opinions based 

solely on new data. Rather, I use new data to update my existing opinions made using prior 

knowledge, for example, from the Monico-1 site." The archaeologist then walks the reporter 

through the tables and begins to explain how they do their inference using Bayes’ theorem. 

Table 3. Frequencies of individual animals and observed butchery marks from the 

Monico-2 village. Note the small total number of individuals and the particularly tiny 

sample of coyote individuals. 

  Individuals of each species   

  Dog  Coyote Total butchery marks 

Butchery 

mark  

Present 9 1 10 

Absent 1 0 1 

 Total 

individuals 10 1 Total = 11 
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Table 4. Joint probabilities of individual animals and observed butchery marks 

from the Monico-2 village. Note the larger proportion of dog bones with butchery 

marks compared to the sample from Monico-1. 

  Individuals of each species   

 

 P(Dog) P(Coyote) 

Marginal butchery 

marks 

Butchery 

mark  

P(Present) 0.82 0.09 0.91 

P(Absent) 0.09 0.00 0.09 

 Marginal 

species 0.91 0.09 Total = 1 

 

The archaeologist explains that the posterior probabilities of dog and coyote butchery 

drawn from the (much larger) Monico-1 faunal assemblage have become new “prior” information 

on the probabilities that Monico villagers butchered dogs and coyotes. These quantities can be 

represented by:  𝑃(𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 | 𝐷𝑜𝑔)𝑀𝑜𝑛𝑖𝑐𝑜−1 =
971 = 0.13, 

and  𝑃(𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 | 𝐶𝑜𝑦𝑜𝑡𝑒)𝑀𝑜𝑛𝑖𝑐𝑜−1 =
23

29
= 0.79. 

The archaeologist’s knowledge about the degree to which the Monico-1 villagers butchered 

dogs and coyotes can be updated in a new iteration of Bayes’ theorem that includes the data from 

Monico-2. To account for the archaeological context from which the calculations derive, the 

archaeologist adds the subscripts 𝑀𝑜𝑛𝑖𝑐𝑜 − 1 and 𝑀𝑜𝑛𝑖𝑐𝑜 − 2 to the equation terms, as follows:  

𝑃(𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 |𝐷𝑜𝑔)𝑀𝑜𝑛𝑖𝑐𝑜−2 =
𝑃(𝐷𝑜𝑔|𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦)𝑀𝑜𝑛𝑖𝑐𝑜−2 ×  𝑃(𝐷𝑜𝑔|𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦)𝑀𝑜𝑛𝑖𝑐𝑜−1𝑃(𝐷𝑜𝑔)𝑀𝑜𝑛𝑖𝑐𝑜−2

 

 = 

0.820.91 × 0.13

0.91
 = 0.13. 

Adding in the dog data from Monico-2 causes the probability of dog butchery to decrease 

slightly (from 0.127 to 0.126, but rounded to 0.13). The same operation can be conducted using 

the prior from the first excavation and the new coyote data: 𝑃(𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦 𝑚𝑎𝑟𝑘 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 | 𝐶𝑜𝑦𝑜𝑡𝑒)𝑀𝑜𝑛𝑖𝑐𝑜−2  =
𝑃(𝐶𝑜𝑦𝑜𝑡𝑒|𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦)𝑀𝑜𝑛𝑖𝑐𝑜−2 × 𝑃(𝐶𝑜𝑦𝑜𝑡𝑒|𝐵𝑢𝑡𝑐ℎ𝑒𝑟𝑦)𝑀𝑜𝑛𝑖𝑐𝑜−1𝑃(𝐶𝑜𝑦𝑜𝑡𝑒)𝑀𝑜𝑛𝑖𝑐𝑜−2   

= 

0.090.91 × 0.79

0.09
 = 0.87. 
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In this case, after updating the data, the new posterior probability of coyote butchery is also higher 

(changing even more from the prior probability than in the case of dogs). The archaeologist 

explains this to the reporter. Furthermore, the archaeologist urges caution given that the data and 

resulting probabilities from the original site were derived from a sample of 100 individuals, 

whereas the current selection represents a total of only 11. Although the probability calculations 

are correct, it would be prudent to wait for more data, as the excavation at Monico-2 is ongoing. 

However, the archaeologist’s Bayesian analysis suggests that, at this point, we should not expect 

butchery marks on any newly discovered dogs at the Monico-2 site.  

LINKING BAYES’ THEOREM TO DATA AND HYPOTHESES 

The Monico case study provides a tangible example of the different components of a 

Bayesian analysis, including estimating an event’s probability and the probability of one event 

given another (using currently available data), along with the key concepts of likelihood, prior and 

posterior probabilities, and how to update one’s knowledge using the previous Bayesian posterior 

as the new prior. Although the procedure exemplified here is specific to archaeological count data, 

Bayes’ theorem is very general and can be useful for a wide variety of data and data-generating 

processes. This section generalizes Bayes’ theorem to a variety of other scientific scenarios.  

We stated earlier that Bayesian scientists use the data in hand (D) to assign probabilities to 

statements or hypotheses (H) about a population. The statement 𝑃(𝐻|𝐷), i.e., the probability of 

the hypothesis given the data, formalizes this relationship. In our example of the Monico sites, the 

archaeologist was trying to calculate the probability that the Monico people butchered dogs and 

coyotes (the hypotheses) given the number of cut marks on their bones (the data in hand). To 

operationalize this statement in the context of data and hypotheses, Bayes’ theorem functions as 

follows: 𝑃(𝐻|𝐷) =
𝑃(𝐷|𝐻) × 𝑃(𝐻)𝑃(𝐷)

, 

where P(H|D) is the posterior probability of the hypothesis given the data; 𝑃(𝐷|𝐻) is the 

probability of the data given the hypothesis (or the likelihood) of the observed data; P(H) is the 

prior probability of the hypothesis (before the data were collected); and P(D) is the probability of 

the data in hand (out of all possible values of the data). Alternatively, generalizing and using more 

modern statistical vernacular, this operation can be expressed as: 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟𝑃(𝐷𝑎𝑡𝑎)

. 

In this manner, Bayesian statistics offers an alternative statistical framework for updating 

and evaluating hypotheses through a mechanism that obtains a posteriori information about the 

posterior of interest based on the data, a statistical model (expressed as a likelihood), and 

appropriately formulated prior information. In other words, with an explicit statement of our prior 

information, a clearly defined statistical model, and a desire to update our understanding, Bayes’ 

theorem provides us with a probabilistic framework for making interpretations. 

In addition to the coherent and explicit nature of the framework, there is another attractive 

feature of the Bayesian paradigm, namely that it allows us to learn from experience. Priors enable 

the explicit contextualization of previous knowledge or beliefs about the topic under investigation 
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(Buck, et al. 1996; Cowgill 1993). Using previous knowledge should be a natural tendency for 

archaeologists. As Buck, et al. (1996) discusses, archaeologists apply previous knowledge often, 

for example, when inferring the function of newly discovered artifacts by using their association 

to artifacts and features that have already been discovered. Similarly, the archaeologist in our 

example was able to contextualize the data from the Monico-2 site based on Monico-1 

observations. Few other interpretive frameworks offer a clear structure for updating beliefs in light 

of new information, and yet this is such an important part of most intuitive approaches to learning 

about the world in which we live. Moreover, today’s posterior information (based on current data 

and prior information) is in a suitable form to become the prior for further work if and when more 

data become available.  

From inferences about discrete points to data distributions 

Thus far, the example has shown how Bayesian inference can be applied to hypotheses 

defined by statements about discrete events. In the fictitious example above, the hypotheses were 

represented by statements about whether the observed faunal remains were the result of butchery. 

The observed data assigned probabilities to each hypothesis, thus indicating the amount or degree 

of belief in the hypothesis. These data were discrete events from only two sites. Yet, in reality, 

although the population of the proportion of butchered dog bones are the outcomes of the same 

behavioral process (butchery), these values are likely to vary from site to site. 

Consequently, many archaeologists might wish to compare their single-site data to the 

universe of known sites. In this case, the hypotheses to be evaluated are characterized by the values 

of a probability model’s parameters. Although we mentioned this earlier, at this point it is worth 

recalling that such parameters describe certain characteristics of a sample or population. For 

archaeologists, the most common parameters are those that measure central tendency, such as the

mean or median. Bayesian inference can be conducted using other parameters, as well as the full 

distribution of the posterior, data and prior information. These are usually represented by 

probability models. Likely the most well-known such model is the normal probability model, in 

which the probability distribution has a symmetrical, bell shape around a single mean value. When 

(sample) data and associated models of probability are involved, it is conventional to use the 

Roman symbol x to represent the observed (or sample) data and the Greek symbol θ (theta) to 

represent the parameter (or multiple set of parameters) of the model of the population that we are 

trying to learn about. Given x and a model with parameter(s) θ, we can re-couch Bayes’ theorem 

and its three components—the likelihood, the prior, and the posterior—in the context of data 

distributions and their probability models. 

The likelihood is a statistical function, or a mathematical expression, that associates 

individual data quantities with their respective probability values. Its form is determined by the 

specific probability model being used, but, in general terms, it is represented by P(x|θ), i.e., the 

probability distribution of newly observed data conditioned on the parameter(s). Consequently, the 

likelihood is the probability of observing particular data values given some specific (or 

hypothesized) values of the unknown parameters. Therefore, this is a formal statement of the 

relationship between the parameters about which we want to learn and the data we collect. 

The prior is also a function and can be represented by P(θ). It is a statement of what we 

know about the probability distribution of the parameter(s) before new data are collected. In simple 

terms, we can think of this as the probability we attach to observing specified values of the 
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unknown parameters based on what we knew before we observed the data. This is a formal 

statement of our knowledge prior to collecting the latest data. 

The posterior is what we want to obtain: a combination of the information contained in the 

new data, the likelihood and the prior. The posterior is represented by P(θ|x). As presented in the 

previous section, this is the probability of the hypothesis given the data, or P(H|D). It is the 

probability distribution of the model’s parameter(s) conditioned on the data. In simple terms, we

can think of this as the probability we attach to specified or hypothetical values of the unknown 

parameters after observing new data. In this context, we can express Bayes’ theorem as: 

 𝑃(𝜃|𝑥) =
𝑃(𝑥|𝜃) × 𝑃(𝜃)𝑃(𝑥) 

.  

The Bayesian archaeologist and the uncertainty of hypotheses 

As described above, the Bayesian inference about Monico-2 given to the reporter was 

based only on the new Monico-2 data and the archaeologist’s prior expert experience with Monico-

1. However, if the archaeologist wants to give the reporter the best possible estimate, they could 

use all available evidence, including the Monico-2 data, their expert knowledge and information 

from other archaeological sites. To do this, the archaeologist reviews the published literature and 

identifies additional information on the proportion of dogs with butchery marks recovered from 

38 previously excavated Monico sites. The archaeologist then seeks to investigate the variability

of dog butchery behavior as evidenced by the proportion of dogs with butchery marks at each 

Monico site, with a view to obtaining a probabilistic prior statement about the theta parameter, θ 
(the proportion of dogs with butchery marks). 

Table 5 illustrates the distribution of θ values across the frequency and proportions of sites. 

The table shows that out of the 38 sites, 20 reported having between 0% and 5% of dogs showing 

evidence of butchery marks. Twelve sites have between 6% and 15% of dogs showing evidence 

of butchery marks, while another four sites report values for θ between 16% and 35%. Meanwhile, 

another two archaeological sites report that θ ranges from 36% to 75%. There are no sites with 

more than 75% of dog remains showing evidence of butchery.  

To begin, the archaeologist speaks with other experts about nutrition, the archaeology of 

food, and Monico archaeology and ethnography. Based on their scientific knowledge, they 

hypothesize that, to consider dogs as having made a substantial food contribution at a Monico site, 

there would need to be evidence of butchery marks on at least 50% of individual dogs. “So,” the 

archaeologist thinks, “my first hypothesis, 𝐻1, is that the value of θ should be at least 50%, or 0.5, 

for any specific Monico site. What is the probability of this hypothesis being correct for Monico-

2 based on the data I have and my prior knowledge?” 

The Monico-2 site sample indicated that, out of 10 individual dogs, 9 had butchery marks 

on them (so, θ = 0.9). The archaeologist wants to use prior knowledge including the information 

from the literature review to understand the variability of θ at Monico village sites. 

The archaeologist first records the dog butchery proportions (θ) from the 38 sites found in 

the literature. To summarize these data, in Table 5 (column 1), they group the θ values into equal 

intervals in increments of 0.10 (10%, except the first interval, which is smaller). They also record 

the number of sites reporting θ values in each interval (column 2). The archaeologist then 
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calculates the prior probability of each θ-interval by dividing the number in each cell of column 2 

of Table 5 by the total number of sites i.e., 38. In this way, the third column of Table 5 reports the 

proportion of sites within each θ-interval. This frequency distribution also serves as the prior 

distribution of θ values. 

Table 5. Frequency distribution of the number of sites with 

reported proportions of dog remains with butchery marks (θ) 
and the proportion of the total number of sites with butchery 

marks on dog bones (prior probabilities) 

Proportion of 

dog remains 

with butchery 

marks (θ) 

Number of sites 

with reported θ  
Proportion of total 

number of sites with 

reported θ (prior 

probability) 

0 - 0.05 20 0.53 

0.06 - 0.15 12 0.32 

0.16 - 0.25 3 0.08 

0.26 - 0.35 1 0.03 

0.36 - 0.45 1 0.03 

0.46 - 0.55 0 0.00 

0.56 - 0.65 0 0.00 

0.66 - 0.75 1 0.03 

0.76 - 0.85 0 0.00 

0.86 - 0.95 0 0.00 

Total 38 1.0 

 

The archaeologist then plots the distribution of the proportion of dogs butchered at Monico 

sites (Table 5) in order to visualize the resulting prior knowledge that can be derived from this 

dataset (Figure 1). 
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Figure 1. Simple representation of the distribution of the archaeologist’s prior probabilities of the 
estimates of θ (theta), the proportion of dogs with butchery marks at Monico archaeological sites 
(from Table 5). Note that small values of θ have a higher prior probability than larger ones. 

 

Recall that, in the Bayesian framework, one needs the likelihood (P(x|θ)), the probability 

of the data (P(x)), and the prior probability of the hypothesis (P(θ)) to compute the posterior 

probability of the hypothesis that θ > 0.50, given the data (P(θ>0.5|x)). Figure 1 illustrates the 

prior probability, P(θ), for different θ values. 

Note that in contrast to the single-event values in the previous examples above, the 

components of Bayes’ theorem in this case are distributions of values. Applying Bayesian statistics 

in such situations provides a particular advantage because the framework enables archaeologists 

to evaluate the probability of a hypothesis and the associated uncertainty. Thus, to continue with 

the Bayesian analysis of the Monico-2 data in light of the prior knowledge from the 38 sites 

(represented in Figure 1), the archaeologist needs a model to represent the probability of the data, 

x, and associated parameter(s), θ, in order to compute the likelihood, P(x|θ), and the probability of 

the data, 𝑃(𝑥).  

The likelihood 

To compute the probability of the Monico-2 data given the hypothesis, the archaeologist 

needs a function that can represent the likelihood, P(x|θ), of these data, x, given the parameter of 
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interest, θ. Archaeologists frequently employ a probability function termed the binomial model to 

calculate the likelihood of data composed of binary observations, i.e., observations expressed as 

1/0, yes/no, true/false, or present/absent. In this case, the binomial model is appropriate for 

observations indicating the presence or absence of butchery marks on individual dog skeletons, as 

in the Monico-2 data. As such, the archaeologist wants to compute the likelihood that 9 out of 10 

dog skeletons from this site exhibited butchery marks on them. 

Mathematically, the binomial model is expressed by: 𝑃(𝑥|𝜃) =
𝑁𝑘 × 𝜃𝑘 × (1 − 𝜃)𝑁−𝑘. 

The symbols k and N represent the data: k is the number of dogs observed with butchery marks, 

while N is the total dogs observed. The model’s parameter, 𝜃, in this example represents the 

proportion of dogs with butchery marks out of all dogs observed at Monico-2.  

The archaeologist uses the parameter estimation method called maximum likelihood (ML) 

to determine the most likely value of θ that would have generated the data. ML asks, under the 

binomial model, which value of θ is most likely to lead to the data observed? In this case, the 

archaeologist’s binomial data are k = 9 dogs with butchery marks and N = 10 total dogs. ML 

evaluates which value of the θ parameter maximizes 𝑃(𝑥|𝜃), the likelihood, over a systematic 

range of quantities between 0 and 1.  

To estimate the most likely value of θ, the archaeologist assumes that the probability of 

observing each butchered dog is independent of the others, making the probability of observing 9 

butchered dogs, 𝜃9. Conversely, the probability of observing a single unbutchered dog is (1 −𝜃)(10−9), and the probability of both 9 butchered dogs and 1 unbutchered dog occurring is 𝜃9 ×  (1 − 𝜃)(10−9). However, to compute the likelihood of the data, the archaeologist also needs 

to account for the number of different ways that the 9 observations of dogs with butchery marks, 

k, can occur in the sequence of 10 dog observations, N. 

The binomial model does this by computing 
𝑁𝑘, known as the binomial coefficient (read as 

“N choose k”). In this case, if positive identifications of butchery marks on dogs are represented 

by 1s and no butchery marks are 0s, the binomial coefficient computes how many unordered sets 

could have resulted in nine 1s and one 0: for example x = {0, 1, 1, 1, 1, 1, 1 ,1, 1, 1}, {1, 1, 1, 1, 0, 

1, 1 ,1, 1, 1}, {1, 1, 1, 1, 1, 1, 1 ,1, 1, 0}b, … etc. The binomial coefficient is shorthand and may 

be calculated using the following equation: 𝑁𝑘  =
𝑁!𝑘!  ×  (𝑁 − 𝑘)!

  

                                                 
b Not all sets are enumerated here, but this example should enable the reader to imagine how this 

can occur in a total of 10 unique ways. Although in this case the solution is quite simple, in other 

applications, the solution might not be as obvious, e.g., the number of ways five successes can occur in 10 

tries, i.e., 10 choose 5 = 252. 
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where ! is the factorial function that yields the product of an integer and all the integers below it. 

In our case, N=10 and k=9, so:  

N! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3,628,800; 

k! = 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 362,880; 

and (𝑁 − 𝑘)! = (10-9)! = 1! = 1.  

Therefore,  𝑁𝑘 =
𝑁!𝑘! × (𝑁−𝑘)!

=
10!

9! × (10−9)!
=  

3,628,800

362,880 × 1 
 = 10. 

Once 
𝑁𝑘 has been computed, the archaeologist may continue to estimate the likelihood value 

of a given quantity of 𝜃 by calculating: 

 𝑃(𝑥|𝜃) = 10 ⋅  𝜃9 ⋅  (1 − 𝜃)(10−9) 

across the range of 𝜃 values from 0 to 1 to find the likelihood distribution of the data and, thus, the 

value of 𝜃 that maximizes the likelihood function. This approach is illustrated in Figure 2, from 

which the archaeologist learns that the ML estimate of θ (given the Monico-2 data) is 0.9; in other 

words, the observations at Monico-2 are most likely if the proportion of dogs butchered across 

Monico-2 (θ) is also 0.9 (or 90%). 
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Figure 2. Distribution of standardized likelihood values corresponding to variable quantities of 𝜃 

across the 0, 1 range. Dashed black line indicates the value of 𝜃 that maximizes the likelihood 

of the data. This is known as the ML estimate of 𝜃c. 

 

The prior 

Much like using the binomial probability model to obtain the likelihood distribution of the 

Monico-2 data, the archaeologist can use another probability model to express 𝑃(𝜃), the 

probability distribution of θ, also known as the prior. In this case, the archaeologist needs a 

probability function that models the distribution of θ, the proportion of dogs with butchery marks, 

across the 38 sites observed before the excavation of Monico-2. Statisticians frequently use the 

beta probability function to model the distribution of proportions like θ. The mathematical 

expression of the beta model is: 𝑃(𝐻) = 𝑃(𝜃)  = 𝜃𝑎−1 ⋅  (1 − 𝜃)𝑏−1. 

The shape of the beta model is thus controlled by two parameters, a and b, which in turn 

control key summary statistics such as the model’s mean and variance. Unlike with the likelihood 

model, the archaeologist in this case wants to find a distribution of 𝜃 that quantitatively describes 

                                                 
c It should be noted here that while the likelihood renders values in the 0–1 scale, it is not necessarily a 

probability function that adds up (integrates) to 1. To plot the likelihood on the same scale as the prior and the posterior 

distributions, all distributions have been normalized (rescaled) to sum to 1. 
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their prior knowledge. To do this, the beta parameters can be adjusted to fit the shape of the prior 

data distribution in Figure 1. Through a visual best fit, the archaeologist estimates that the values 

a = 1.5 and b = 16 result in a probability distribution that resembles that of the prior knowledge 

about θ (i.e., the shape shown in Figure 1). Thus, the distribution of the probability,  𝑃(𝐻) = 𝑃(𝜃)  = 𝜃(1.5−1) ⋅  (1 − 𝜃)(16−1),  

across all θ values between 0 and 1 is illustrated in Figure 3. 

 

Figure 3. Standardized beta probability model, with parameters a = 1.5 and b = 16, 
representing the archaeologist’s prior probabilities depicted in Figure 1. Note the similarity to 
Figure 1 in terms of shape, and in particular the location of the mode and range of values. 

The posterior 

The archaeologist is aware that statisticians frequently use the binomial and beta 

distributions in the context of Bayesian analyses because they work well together for modeling the 

likelihood and prior probability distributions, respectively, simplifying the calculations needed to 

compute the posterior. Such convenient pairs of probability models are known as conjugates. As 

a result of the modeling choices made, the archaeologist may algebraically combine the binomial 

likelihood data with the parameters of the beta prior distribution to produce a posterior beta 

distribution represented by: 𝑃(𝐻|𝐷) =  𝑃(𝜃|𝑥) = 𝜃(𝑘𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑+𝑎𝑝𝑟𝑖𝑜𝑟−1) ⋅  (1− 𝜃)
( 𝑁𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑−𝑘𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑+𝑏𝑝𝑟𝑖𝑜𝑟−1)
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 𝑃(𝜃|𝑥) = 𝜃(9 + 1.5 − 1)
 ⋅  (1− 𝜃)

( 10 − 0 + 16 − 1).
 

They thus generate values of 𝑃(𝑥|𝜃), the likelihood, and 𝑃(𝜃), the prior probabilities, to 

calculate 𝑃(𝜃|𝑥), the posterior probability distribution, across a fine grid of 𝜃 values in the 0, 1 

interval (1,000 values between 0, and 1). These are illustrated in Figure 4.  

 

Figure 4. Distributions of the archaeologist’s prior probabilities, the likelihood of the data and the 
posterior probabilities. All probability densities are standardized by a normalizing constant.  

 

The archaeologist then focuses on 𝑃(𝜃|𝑥), the posterior distribution. The posterior will 

help them to make inferences about the probability of θ and its associated uncertainty (Figure 4). 

The archaeologist can visually represent the estimate of θ (the expected proportion of dogs with 

butchery marks at Monico-2, based on the observed data and prior knowledge from the 38 other 

Monico archaeological sites) and the 90% uncertainty range of its estimate with a graph in Figure 

5.  
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Figure 5. Posterior probability distribution with the blue dotted line showing the median (50th-
percentile) estimate (0.38). The solid black line depicts the 90% probability density interval 
(0.23-0.53). 

 

Unlike the NHST framework, the Bayesian posterior probability enables the archaeologist 

to assign probabilities to hypotheses about parameter values. In this case, the hypothesis is that the 

value of θ, the proportion of dogs butchered at Monico-2, is greater than 0.5 (50%, Table 6). The

values shown in Table 6 are inferences resulting from calculations made using the posterior 

distribution. The archaeologist computed the probability that θ is greater than 0.5 (top left-most 

value in the table), and the values of θ at the 5th, 50th and 95th probability percentiles. Recall, earlier, 

the archaeologist in conjunction with other scientists proposed that cut marks would need to appear 

on at least 50% (or 0.5) of the dog remains at a Monico site in order to consider dogs as “an 

important food contribution.” However, Table 6 shows that the value of θ only has a 10% chance 

of being greater than 50%. Therefore, the inference that dogs were a substantial part of the Monico 

diet at Monico-2 is not highly probable. For example, the archaeologist thinks, “If a meteorologist 

told me that there was a 10% chance of rain today, I would not carry an umbrella.”  

Importantly, the uncertainty around the value of θ can also be expressed as a probability 

interval. In the Bayesian framework, these probability intervals are known as the highest 

probability density intervals (HPDIs) and differ from NHST’s CIs. One of the most important 

differences is that the interpretation of the HPDI is much more straightforward. The HPDI is the 

probability of the parameter given the data, whereas, as we described earlier, the CI is not a 
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probability about the value of the parameter estimate. In the case of θ, Figure 5 tells the 

archaeologist that there is quite a lot of uncertainty around the true value of θ. For example, the 

median, or 50th percentile, estimate of θ is 0.38, meaning that, once the available prior information 

from the literature and the Monico-2 data are incorporated, it is most likely that the Monico-2 

occupants included dogs in their diet 38% of the time. However, the 90% HPDI spans 0.23 to 0.53 

(23% to 53%), meaning that, based on our prior information and current data, there is a 90% chance 

that θ is between these values and only a 10% chance that it is larger or smaller than these limits. 

Although the variation in θ reaches over 50%, it does so only slightly and again is not very 

probable. These results mean that the archaeologist is very uncertain about the occupants’ 

proclivity to butcher dogs (presumably) for dietary purposes at Monico-2, especially considering 

the small sample size and the fact that the current Monico-2 data differ quite markedly from those 

found at other sites. 

Table 6. Inferences about θ from the posterior probability distribution 

 P(θ > 0.5) Values of θ between the 5th and 95th percentiles 

0.10 5% 50% 95% 

 0.24 0.38 0.54 

CONCLUSION 

Bayesian inference has advantages for archaeologists that extend well beyond the realm of 

radiocarbon calibration and chronological modeling. The NHST framework has served 

archaeologists well for many years, but has limitations. Unfortunately, NHST bases inference on 

new data alone due to its inherent structure. Its language and assumptions can be convoluted and 

confusing, and the approach cannot be used to directly compare multiple working hypotheses. 

Bayesian inference overcomes many of these problems for archaeologists. In many ways, 

archaeologists often think through problems using a Bayesian framework without knowing they 

are doing so and without using a formal probabilistic framework. Like the Bayesian archaeologist 

in our parable, most archaeologists do not form inferences about the past using new data isolated 

from the existing body of knowledge. Instead, we continually update our prior knowledge with 

new evidence to make decisions, form opinions and generate conclusions. The advantage of

Bayesian inference over NHST is that it affords archaeologists 1) a more natural toolkit to learn 

from data, 2) straightforward language to make hypotheses quantifiable, explicit and transparent, 

and 3) the ability to use probability for comparing multiple hypotheses and conducting further 

evaluation.  

Consequently, the Bayesian approach represents a paradigm shift in archaeological 

inference. Bayesian statistics offers a coherent inferential framework that explicitly outlines the 

way in which one’s prior information is updated with new data to produce the current state of 

knowledge. The process helps to evaluate the degree to which current and new evidence support 

hypotheses. This may be conducted iteratively until there is a desirable amount of confidence (or 

lack thereof) in the accuracy of a hypothesis. In this context, the Bayesian framework resembles a 

learning process not unlike scientific investigation. For example, archaeologists continually update 
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their knowledge and degree of belief in hypotheses using new information gathered through 

multiple data collection methods, including excavation, survey, experimental, laboratory and other 

analytical activities. 

An increasing number of archaeologists are using Bayesian statistics to calibrate 

radiocarbon dates, build chronologies and evaluate their hypotheses about the past. The popularity 

of chronology-related Bayesian software has made Bayesian inference in that context a simple 

operation, meaning that most users will find the software easy to operate without a basic 

understanding of the logic of Bayesian inference and its three fundamental components: the 

likelihood, the prior and the posterior. Moreover, without such fundamental understanding, the 

analytical power of Bayesian statistics, beyond chronology construction, may not be obvious, thus 

slowing rather than enhancing more general adoption.  

To mitigate this problem, this paper highlights how archaeologists may use Bayesian 

inference to approach complex questions through a simple fictional example. This approach allows 

archaeologists to evaluate, compare and update their hypotheses directly, using the weight of 

evidence and a straightforward process. We consider this one of the most significant impacts of 

the Bayesian paradigm. In addition, Bayesian inference requires archaeologists to become 

cognizant of and transparent about prior and current information for statistical analyses within a 

probabilistic structure. The framework explicitly incorporates all information (prior and current) 

to enable a more comprehensive understanding of a problem. 

As a result, applications of this method are conducive to replication, allowing them to be 

improved upon by other archaeological scientists. In this light, Bayesian inference dovetails with 

ongoing efforts to promote open science methods and open data in archaeological research. This 

context encourages researchers to outline the entire logical process that underlies their results. Due 

to its advantages, we believe that Bayesian inference is well-positioned to become a standard 

approach to evaluating quantitative hypotheses in archaeology.
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