199 research outputs found

    Cells Assemble Invadopodia-Like Structures and Invade into Matrigel in a Matrix Metalloprotease Dependent Manner in the Circular Invasion Assay

    Get PDF
    The ability of tumor cells to invade is one of the hallmarks of the metastatic phenotype. To elucidate the mechanisms by which tumor cells acquire an invasive phenotype, in vitro assays have been developed that mimic the process of cancer cell invasion through basement membrane or in the stroma. We have extended the characterization of the circular invasion assay and found that it provides a simple and amenable system to study cell invasion in matrix in an environment that closely mimics 3D invasion. Furthermore, it allows detailed microscopic analysis of both live and fixed cells during the invasion process. We find that cells invade in a protease dependent manner in this assay and that they assemble focal adhesions and invadopodia that resemble structures visualized in 3D embedded cells. We propose that this is a useful assay for routine and medium throughput analysis of invasion of cancer cells in vitro and the study of cells migrating in a 3D environment

    Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization

    Get PDF
    Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape

    Nogo-B is associated with cytoskeletal structures in human monocyte-derived macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reticulon Nogo-B participates in cellular and immunological processes in murine macrophages. Since leukocytes are an essential part of the immune system in health and disease, we decided to investigate the expression of Nogo-A, Nogo-B and Nogo-C in different human immune cell subpopulations. Furthermore, we analyzed the localization of Nogo-B in human monocyte-derived macrophages by indirect immunofluorescence stainings to gain further insight into its possible function.</p> <p>Findings</p> <p>We describe an association of Nogo-B with cytoskeletal structures and the base of filopodia, but not with focal or podosomal adhesion sites of monocyte-derived macrophages. Nogo-B positive structures are partially co-localized with RhoA staining and Rac1 positive membrane ruffles. Furthermore, Nogo-B is associated with the tubulin network, but not accumulated in the Golgi region. Although Nogo-B is present in the endoplasmic reticulum, it can also be translocated to large cell protrusions or the trailing end of migratory cells, where it is homogenously distributed.</p> <p>Conclusions</p> <p>Two different Nogo-B staining patterns can be distinguished in macrophages: firstly we observed ER-independent Nogo-B localization in cell protrusions and at the trailing end of migrating cells. Secondly, the localization of Nogo-B in actin/RhoA/Rac1 positive regions supports an influence on cytoskeletal organization. To our knowledge this is the first report on Nogo-B expression at the base of filopodia, thus providing further insight into the distribution of this protein.</p

    Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis

    Get PDF
    BACKGROUND: Oesophageal squamous cell carcinoma (SCC) causes the highest number of cancer deaths in some regions of Northern China. Previously, we narrowed down a critical region at 9q33-34, identified to be associated with tumour-suppressive function of deleted in oesophageal cancer 1 (DEC1) in oesophageal SCC. METHODS: We generated DEC1 antibody and constructed tissue microarrays (TMAs) utilising tissue specimens from Henan, a high-risk region for oesophageal SCC, to investigate the importance of DEC1 expression in this cancer. RESULTS: Tissue microarray immunohistochemical staining reveals significant loss of DEC1 from hyperplasia, to tumour, and to lymph node metastasis. In addition, the loss of DEC1 in tumour is age-dependent. Interestingly, there is significant abrogation of DEC1 expression in patients with a family history of oesophageal SCC. Deleted in oesophageal cancer 1 localises to both the cytoplasm and nucleus. The vesicular pattern of DEC1 in the cytoplasm appears to localise at the Golgi and Golgi-endoplasmic reticulum intermediate compartment. CONCLUSION: This is the first TMA study to suggest a clinical association of DEC1 in lymph node metastatic oesophageal SCC, early onset oesophageal SCC and familial oesophageal SCC development. Subcellular localisation of DEC1 and its expression in oesophageal SCC tissues provide important insight for further deciphering the molecular mechanism of DEC1 in oesophageal SCC development. British Journal of Cancer (2011) 104, 841-849. doi:10.1038/bjc.2011.25 www.bjcancer.com Published online 15 February 2011 (C) 2011 Cancer Research U

    Novel role of cPLA2α in membrane and actin dynamics

    Get PDF
    Actin-directed processes such as membrane ruffling and cell migration are regulated by specific signal transduction pathways that become activated by growth factor receptors. The same signaling pathways that lead to modifications in actin dynamics also activate cPLA2α. Moreover, arachidonic acid, the product of cPLA2α activity, is involved in regulation of actin dynamics. Therefore, it was investigated whether cPLA2α plays a role in actin dynamics, more specifically during growth factor-induced membrane ruffling and cell migration. Upon stimulation of ruffling and cell migration by growth factors, endogenous cPLA2α and its active phosphorylated form were shown to relocate at protrusions of the cell membrane involved in actin and membrane dynamics. Inhibition of cPLA2α activity with specific inhibitors blocked growth factor-induced membrane and actin dynamics, suggesting an important role for cPLA2α in these processes

    Lasp-1 Regulates Podosome Function

    Get PDF
    Eukaryotic cells form a variety of adhesive structures to connect with their environment and to regulate cell motility. In contrast to classical focal adhesions, podosomes, highly dynamic structures of different cell types, are actively engaged in matrix remodelling and degradation. Podosomes are composed of an actin-rich core region surrounded by a ring-like structure containing signalling molecules, motor proteins as well as cytoskeleton-associated proteins

    Enhanced CellClassifier: a multi-class classification tool for microscopy images

    Get PDF
    BACKGROUND: Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. RESULTS: We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. CONCLUSION: Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening
    corecore