85 research outputs found
Agile delivery of protein therapeutics to CNS
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics
SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature
Copper/zinc superoxide dismutase (CuZnSOD; SOD1) is widely considered as a potential therapeutic candidate for pathologies involving oxidative stress, but its application has been greatly hindered by delivery issues. In our previous study, nano-formulated SOD1 (cl-nanozyme) was shown to decrease infarct volume and improve sensorimotor functions after single intravenous (IV) injection in a rat middle cerebral artery occlusion (MCAO) model of ischemia/reperfusion (I/R) injury. However, it remained unclear how cl-nanozyme was able to deliver SOD1 to the brain and exert therapeutic efficacy. Present study aims to answer this question by exploring micro-distribution pattern of cl-nanozyme in the rat brain after stroke. Immunohistochemistry studies demonstrated cl-nanozyme co-localization with fibrin along damaged arteries and capillaries in the ischemic hemisphere. We further found that cl-nanozyme can be cross-linked into thrombi formed after I/R injury in the brain, and this effect is independent of animal species (rat/mouse) used for modeling I/R injury. This work is also the first report reinforcing therapeutic potential of cl-nanozyme in a well-characterized mouse MCAO model of I/R injury
Preventive composition development of “Do not be ill” tea for people with mental work loads
The development technology of new functional product prophylactic tea “Do not be ill” is presented in the article. It includes a whole complex of components of exclusively natural origin. The composition is aimed to health promotion and prevention of disorders of the nervous, immune and endocrine systems.В статье предложены состав нового функционального продукта — профилактического фито-чая «Не болей». В его состав входит целый комплекс компонентов исключительно природного происхождения. Адекватный прием, то есть прием согласно указанным в статье правилам, ведет к укреплению здоровья и профилактике нарушений нервной, иммунной и гормональной систем
Preventive composition development of “Do not be ill” tea for people with mental work loads
The development technology of new functional product prophylactic tea “Do not be ill” is presented in the article. It includes a whole complex of components of exclusively natural origin. The composition is aimed to health promotion and prevention of disorders of the nervous, immune and endocrine systems.В статье предложены состав нового функционального продукта — профилактического фито-чая «Не болей». В его состав входит целый комплекс компонентов исключительно природного происхождения. Адекватный прием, то есть прием согласно указанным в статье правилам, ведет к укреплению здоровья и профилактике нарушений нервной, иммунной и гормональной систем
Cross-linked antioxidant nanozymes for improved delivery to CNS
Formulations of antioxidant enzymes, superoxide dismutase 1 (SOD1, also known as Cu/Zn SOD) and catalase were prepared by electrostatic coupling of enzymes with cationic block copolymers, polyethyleneimine-poly(ethylene glycol) or poly(L-lysine)-poly(ethylene glycol), followed by covalent cross-linking to stabilize nanoparticles (NPs). Different cross-linking strategies (using glutaraldehyde, bis-(sulfosuccinimidyl)suberate sodium salt or 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride with N-hydroxysulfosuccinimide) and reaction conditions (pH and polycation/protein charge ratio) were investigated that allowed immobilizing active enzymes in cross-linked NPs, termed "nanozymes." Bienzyme NPs, containing both SOD1 and catalase were also formulated. Formation of complexes was confirmed using denaturing gel electrophoresis and western blotting; physicochemical characterization was conducted using dynamic light scattering and atomic force microscopy. In vivo studies of 125I-labeled SOD1-containing nanozymes in mice demonstrated their increased stability in both blood and brain and increased accumulation in brain tissues, in comparison with non-cross-linked complexes and native SOD1. Future studies will evaluate the potential of these formulations for delivery of antioxidant enzymes to the central nervous system to attenuate oxidative stress associated with neurological diseases. From the Clinical Editor: Formulations of antioxidant enzyme complexes were demonstrated along with their increased stability in both blood and brain and increased accumulation in CNS tissue. Future studies will evaluate the potential of these formulations for antioxidant enzyme deliver to the CNS to attenuate oxidative stress in neurodegenerative diseases
Macrophage delivery of therapeutic nanozymes in a murine model of Parkinsons disease
Background: Parkinsons disease is a common progressive neurodegenerative disorder associated with profound nigrostriatal degeneration. Regrettably, no therapies are currently available that can attenuate disease progression. To this end, we developed a cell-based nanoformulation delivery system using the antioxidant enzyme catalase to attenuate neuroinflammatory processes linked to neuronal death. Methods: Nanoformulated catalase was obtained by coupling catalase to a synthetic polyelectrolyte of opposite charge, leading to the formation of a polyion complex micelle. The nanozyme was loaded into bone marrow macrophages and its transport to the substantia nigra pars compacta was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. Results: Therapeutic efficacy of bone marrow macrophages loaded with nanozyme was confirmed by twofold reductions in microgliosis as measured by CD11b expression. A twofold increase in tyrosine hydroxylase-expressing dopaminergic neurons was detected in nanozyme-treated compared with untreated MPTP-intoxicated mice. Neuronal survival was confirmed by magnetic resonance spectroscopic imaging. Bone marrow macrophage-loaded catalase showed sustained release of the enzyme in plasma. Conclusion: These data support the importance of macrophage-based nanozyme carriage for Parkinsons disease therapies
Regulation of learning and memory by meningeal immunity: a key role for IL-4
Proinflammatory cytokines have been shown to impair cognition; consequently, immune activity in the central nervous system was considered detrimental to cognitive function. Unexpectedly, however, T cells were recently shown to support learning and memory, though the underlying mechanism was unclear. We show that one of the steps in the cascade of T cell–based support of learning and memory takes place in the meningeal spaces. Performance of cognitive tasks led to accumulation of IL-4–producing T cells in the meninges. Depletion of T cells from meningeal spaces skewed meningeal myeloid cells toward a proinflammatory phenotype. T cell–derived IL-4 was critical, as IL-4−/− mice exhibited a skewed proinflammatory meningeal myeloid cell phenotype and cognitive deficits. Transplantation of IL-4−/− bone marrow into irradiated wild-type recipients also resulted in cognitive impairment and proinflammatory skew. Moreover, adoptive transfer of T cells from wild-type into IL-4−/− mice reversed cognitive impairment and attenuated the proinflammatory character of meningeal myeloid cells. Our results point to a critical role for T cell–derived IL-4 in the regulation of cognitive function through meningeal myeloid cell phenotype and brain-derived neurotrophic factor expression. These findings might lead to the development of new immune-based therapies for cognitive impairment associated with immune decline
Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain
Recent work has stimulated interest in the use of exosomes as nanocarriers for delivery of small drugs, RNAs, and proteins to the central nervous system (CNS). To overcome the blood-brain barrier (BBB), exosomes were modified with brain homing peptides that target brain endothelium but likely to increase immune response. Here for the first time we demonstrate that there is no need for such modification to penetrate the BBB in mammals. The naïve macrophage (Mϕ) exosomes can utilize, 1) on the one hand, the integrin lymphocyte function-associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1), and, 2) on the other hand, the carbohydrate-binding C-type lectin receptors, to interact with brain microvessel endothelial cells comprising the BBB. Notably, upregulation of ICAM-1, a common process in inflammation, promotes Mϕ exosomes uptake in the BBB cells. We further demonstrate in vivo that naïve Mϕ exosomes, after intravenous (IV) administration, cross the BBB and deliver a cargo protein, the brain derived neurotrophic factor (BDNF), to the brain. This delivery is enhanced in the presence of brain inflammation, a condition often present in CNS diseases. Taken together, the findings are of interest to basic science and possible use of Mϕ-derived exosomes as nanocarriers for brain delivery of therapeutic proteins to treat CNS diseases
SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature
Copper/zinc superoxide dismutase (CuZnSOD; SOD1) is widely considered as a potential therapeutic candidate for pathologies involving oxidative stress, but its application has been greatly hindered by delivery issues. In our previous study, nano-formulated SOD1 (cl-nanozyme) was shown to decrease infarct volume and improve sensorimotor functions after single intravenous (IV) injection in a rat middle cerebral artery occlusion (MCAO) model of ischemia/reperfusion (I/R) injury. However, it remained unclear how cl-nanozyme was able to deliver SOD1 to the brain and exert therapeutic efficacy. Present study aims to answer this question by exploring micro-distribution pattern of cl-nanozyme in the rat brain after stroke. Immunohistochemistry studies demonstrated cl-nanozyme co-localization with fibrin along damaged arteries and capillaries in the ischemic hemisphere. We further found that cl-nanozyme can be cross-linked into thrombi formed after I/R injury in the brain, and this effect is independent of animal species (rat/mouse) used for modeling I/R injury. This work is also the first report reinforcing therapeutic potential of cl-nanozyme in a well-characterized mouse MCAO model of I/R injury
- …