17 research outputs found

    Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire

    Get PDF
    Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral β€œneedle" within the greater viral community β€œhaystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities

    Landscape analysis of interactions between nutrition and vaccine responses in children.

    No full text
    The world's poorest children are likely to be malnourished when receiving their childhood vaccines. It is uncertain whether this affects vaccine efficacy and whether the coadministration of nutrient supplements with vaccines has beneficial or detrimental effects. More recently, a detrimental interaction between vitamin A (VA) supplementation (VAS) and the killed diphtheria-tetanus-pertussis vaccine given in early childhood has been suggested. This report provides a critical review of the published interactions between nutritional status and/or supplementation and vaccine responses in children. Due to an absence of evidence for most nutrients, this analysis focused on protein-energy, vitamins A and D, and iron and zinc. All vaccines were considered. Both observational studies and clinical trials that led to peer-reviewed publications in English or French were included. These criteria led to a pool of 58 studies for protein-energy malnutrition, 43 for VA, 4 for vitamin D, 10 for iron, and 22 for zinc. Our analysis indicates that malnutrition has surprisingly little or no effect on vaccine responses. Evidence for definitive adjunctive effects of micronutrient supplementation at the time of vaccination is also weak. Overall, the paucity, poor quality, and heterogeneity of data make it difficult to draw firm conclusions. The use of simple endpoints that may not correlate strongly with disease protection adds uncertainty. A detailed examination of the immunological mechanisms involved in potential interactions, employing modern methodologies, is therefore required. This would also help us understand the proposed, but still unproven, negative interactions between VAS and vaccine safety, a resolution of which is urgently required
    corecore