160 research outputs found

    PHS63 Cost-Effectiveness Analysis Of A Pharmacist-Led Intervention On Improving Inhaler Adherence In Patients With Chronic Obstructive Pulmonary Disease

    Get PDF
    Objectives: The Belgian community pharmacist-led PHARMACOP intervention provided educational inhalation training sessions and motivational interviewing regarding medication use in patients with Chronic Obstructive Pulmonary Disease (COPD). The program significantly improved medication adherence and inhalation techniques compared with usual care. This study aimed to evaluate its costeffectiveness. Methods: An economic analysis was performed from the Belgian health care payer's perspective. A Markov model was constructed in which a cohort of 1,000 patients with COPD receiving the 3-month PHARMACOP-intervention or usual care, was followed. This cohort had a mean age of 70 years, 66% were male, 43% current smokers and patients had a mean Forced Expiratory Volume in 1 second of % predicted of 50. Three types of costs were calculated: intervention costs, medication costs and exacerbation costs. Outcome measures included the number of hospital-treated exacerbations, cost per prevented hospital-treated exacerbation and cost per Quality Adjusted Life-Year (QALY) gained. Follow-up was 1 year in the basecase analysis. Univariate-, probabilistic sensitivity- and scenario analyses (including long-term follow-up) were performed to assess uncertainty. Results: In the basecase analysis, the average overall costs per patient for the PHARMACOPintervention and usual care were € 2,221 and € 2,448, respectively within the 1-year time horizon. This reflects cost savings of € 227 for the PHARMACOP-intervention. The PHARMACOP-intervention resulted in the prevention of 71 hospital-treated exacerbations (167 for PHARMACOP versus 238 for usual care), i.e. 0.07 (95%CI: 0.04-0.10) incremental hospital-treated exacerbations per patient. In addition, a small (<0.001 QALYs) increase in QALYs was observed. Results showed robust costsavings in various sensitivity analyses. Conclusions: Optimization of current pharmacotherapy (e.g. close monitoring of inhalation technique and medication adherence) has been shown to be cost-saving and should be considered before adding new therapies

    MicroRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: A translational approach

    Get PDF
    © 2017 The Author(s). Chronic obstructive pulmonary disease (COPD) is characterized by a progressive airflow limitation and is associated with a chronic inflammatory response in both airways and lungs. microRNAs (miRNAs) are often highly conserved between species and have an intricate role within homeostatic conditions and immune responses. Also, miRNAs are dysregulated in smoking-associated diseases. We investigated the miRNA profile of 523 miRNAs by stem-loop RT-qPCR in lung tissue and cell-free bronchoalveolar lavage (BAL) supernatant of mice exposed to air or cigarette smoke (CS) for 4 or 24 weeks. After 24 weeks of CS exposure, 31 miRNAs were differentially expressed in lung tissue and 78 in BAL supernatant. Next, we correlated the miRNA profiling data to inflammation in BAL and lung, obtained by flow cytometry or ELISA. In addition, we surveyed for overlap with newly assessed miRNA profiles in bronchial biopsies and with previously assessed miRNA profiles in lung tissue and induced sputum supernatant of smokers with COPD. Several miRNAs showed concordant differential expression between both species including miR-31, miR-155, miR-218 and let-7c. Thus, investigating miRNA profiling data in different compartments and both species provided accumulating insights in miRNAs that may be relevant in CS-induced inflammation and the pathogenesis of COPD

    Changes in the expression of NO synthase isoforms after ozone: the effects of allergen exposure

    Get PDF
    BACKGROUND: The functional role of nitric oxide (NO) and various nitric oxide synthase (NOS) isoforms in asthma remains unclear. OBJECTIVE: This study investigated the effects of ozone and ovalbumin (OVA) exposure on NOS isoforms. METHODS: The expression of inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS (eNOS) in lung tissue was measured. Enhanced pause (P(enh)) was measured as a marker of airway obstruction. Nitrate and nitrite in bronchoalveolar lavage (BAL) fluid were measured using a modified Griess reaction. RESULTS: The nitrate concentration in BAL fluid from the OVA-sensitized/ozone-exposed/OVA-challenged group was greater than that of the OVA-sensitized/saline-challenged group. Methacholine-induced P(enh )was increased in the OVA-sensitized/ozone-exposed/OVA-challenged group, with a shift in the dose-response curve to the left, compared with the OVA-sensitized/saline-challenged group. The levels of nNOS and eNOS were increased significantly in the OVA-sensitized/ozone-exposed/OVA-challenged group and the iNOS levels were reduced compared with the OVA-sensitized/saline-challenged group. CONCLUSION: In mice, ozone is associated with increases in lung eNOS and nNOS, and decreases in iNOS. None of these enzymes are further affected by allergens, suggesting that the NOS isoforms play different roles in airway inflammation after ozone exposure

    Quantification and role of innate lymphoid cell subsets in Chronic Obstructive Pulmonary Disease

    Full text link
    Objectives Innate lymphoid cells (ILCs) secrete cytokines, such as IFN-γ, IL-13 and IL-17, which are linked to chronic obstructive pulmonary disease (COPD). Here, we investigated the role of pulmonary ILCs in COPD pathogenesis. Methods Lung ILC subsets in COPD and control subjects were quantified using flow cytometry and associated with clinical parameters. Tissue localisation of ILC and T-cell subsets was determined by immunohistochemistry. Mice were exposed to air or cigarette smoke (CS) for 1, 4 or 24 weeks to investigate whether pulmonary ILC numbers and activation are altered and whether they contribute to CS-induced innate inflammatory responses. Results Quantification of lung ILC subsets demonstrated that ILC1 frequency in the total ILC population was elevated in COPD and was associated with smoking and severity of respiratory symptoms (COPD Assessment Test [CAT] score). All three ILC subsets localised near lymphoid aggregates in COPD. In the COPD mouse model, CS exposure in C57BL/6J mice increased ILC numbers at all time points, with relative increases in ILC1 in bronchoalveolar lavage (BAL) fluid. Importantly, CS exposure induced increases in neutrophils, monocytes and dendritic cells that remained elevated in Rag2/Il2rg-deficient mice that lack adaptive immune cells and ILCs. However, CS-induced CXCL1, IL-6, TNF-α and IFN-γ levels were reduced by ILC deficiency. Conclusion The ILC1 subset is increased in COPD patients and correlates with smoking and severity of respiratory symptoms. ILCs also increase upon CS exposure in C57BL/6J mice. In the absence of adaptive immunity, ILCs contribute to CS-induced pro-inflammatory mediator release, but are redundant in CS-induced innate inflammation

    Assessing the healthcare resource use associated with inappropriate prescribing of inhaled corticosteroids for people with chronic obstructive pulmonary disease (COPD) in GOLD groups A or B:an observational study using the Clinical Practice Research Datalink (CPRD)

    Get PDF
    Abstract Background Recent recommendations from the Global Initiative for Chronic Obstructive Lung Disease (GOLD) position inhaled corticosteroids (ICS) for use in chronic obstructive pulmonary disease (COPD) patients experiencing exacerbations (≥ 2 or ≥ 1 requiring hospitalisation); i.e. GOLD groups C and D. However, it is known that ICS is frequently prescribed for patients with less severe COPD. Potential drivers of inappropriate ICS use may be historical clinical guidance or a belief among physicians that intervening early with ICS would improve outcomes and reduce resource use. The objective of this study was to compare healthcare resource use in the UK for COPD patients in GOLD groups A and B (0 or 1 exacerbation not resulting in hospitalisation) who have either been prescribed an ICS-containing regimen or a non-ICS-containing regimen. Methods Linked data from the Clinical Practice Research Datalink (CPRD) and Hospital Episode Statistics (HES) database were used. For the study period (1 July 2005 to 30 June 2015) a total 4009 patients met the inclusion criteria; 1745 receiving ICS-containing therapy and 2264 receiving non-ICS therapy. Treatment groups were propensity score-matched to account for potential confounders in the decision to prescribe ICS, leaving 1739 patients in both treatment arms. Resource use was assessed in terms of frequency of healthcare practitioner (HCP) interactions and rescue therapy prescribing. Treatment acquisition costs were not assessed. Results Results showed no benefit associated with the addition of ICS, with numerically higher all-cause HCP interactions (72,802 versus 69,136; adjusted relative rate: 1.07 [p = 0.061]) and rescue therapy prescriptions (24,063 versus 21,163; adjusted relative rate: 1.05 [p = 0.212]) for the ICS-containing group compared to the non-ICS group. Rate ratios favoured the non-ICS group for eight of nine outcomes assessed. Outcomes were similar for subgroup analyses surrounding potential influential parameters, including patients with poorer lung function (FEV1 <  50% predicted), one prior exacerbation or elevated blood eosinophils. Conclusions These data suggest that ICS use in GOLD A and B COPD patients is not associated with a benefit in terms of healthcare resource use compared to non-ICS bronchodilator-based therapy; using ICS according to GOLD recommendations may offer an opportunity for improving patient care and reducing resource use

    Global Initiative for Asthma (GINA) strategy 2021 - executive summary and rationale for key changes.

    Get PDF
    The Global Initiative for Asthma (GINA) Strategy Report provides clinicians with an annually updated evidence-based strategy for asthma management and prevention, which can be adapted for local circumstances (e.g., medication availability). This article summarizes key recommendations from GINA 2021, and the evidence underpinning recent changes. GINA recommends that asthma in adults and adolescents should not be treated solely with short-acting beta2-agonist (SABA), because of the risks of SABA-only treatment and SABA overuse, and evidence for benefit of inhaled corticosteroids (ICS). Large trials show that as-needed combination ICS-formoterol reduces severe exacerbations by ≥60% in mild asthma compared with SABA alone, with similar exacerbation, symptom, lung function and inflammatory outcomes as daily ICS plus as-needed SABA. Key changes in GINA 2021 include division of the treatment figure for adults/adolescents into two tracks. Track 1 (preferred) has low-dose ICS-formoterol as the reliever at all steps: as-needed only in Steps 1-2 (mild asthma), and with daily maintenance ICS formoterol (maintenance-and-reliever therapy, MART) in Steps 3-5. Track 2 (alternative) has as-needed SABA across all steps, plus regular ICS (Step 2) or ICS-long-acting beta2-agonist (LABA) (Steps 3-5). For adults with moderate-to-severe asthma, GINA makes additional recommendations in Step 5 for add-on long-acting muscarinic antagonists and azithromycin, with add-on biologic therapies for severe asthma. For children 6-11 years, new treatment options are added at Steps 3-4. Across all age-groups and levels of severity, regular personalized assessment, treatment of modifiable risk factors, self-management education, skills training, appropriate medication adjustment and review remain essential to optimize asthma outcomes

    Different regulation of cigarette smoke induced inflammation in upper versus lower airways

    Get PDF
    Background: Cigarette smoke (CS) is known to initiate a cascade of mediator release and accumulation of immune and inflammatory cells in the lower airways. We investigated and compared the effects of CS on upper and lower airways, in a mouse model of subacute and chronic CS exposure. Methods: C57BL/6 mice were whole-body exposed to mainstream CS or air, for 2, 4 and 24 weeks. Bronchoalveolar lavage fluid (BAL) was obtained and tissue cryosections from nasal turbinates were stained for neutrophils and T cells. Furthermore, we evaluated GCP-2, KC, MCP-1, MIP-3 alpha, RORc, IL-17, FoxP3, and TGF-beta 1 in nasal turbinates and lungs by RT-PCR. Results: In both upper and lower airways, subacute CS-exposure induced the expression of GCP-2, MCP-1, MIP-3a and resulted in a neutrophilic influx. However, after chronic CS-exposure, there was a significant downregulation of inflammation in the upper airways, while on the contrary, lower airway inflammation remained present. Whereas nasal FoxP3 mRNA levels already increased after 2 weeks, lung FoxP3 mRNA increased only after 4 weeks, suggesting that mechanisms to suppress inflammation occur earlier and are more efficient in nose than in lungs. Conclusions: Altogether, these data demonstrate that CS induced inflammation may be differently regulated in the upper versus lower airways in mice. Furthermore, these data may help to identify new therapeutic targets in this disease model

    A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease.

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. METHODS: We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. RESULTS: There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10- 4 in the discovery and OR = 1.30, P = 1.8 × 10- 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52-2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94-1.20). CONCLUSIONS: Our study shows that circulating blood GlycA is a biomarker of early COPD pathology

    Effects of cigarette smoke on endothelial function of pulmonary arteries in the guinea pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by altering the structure and function of pulmonary vessels at early disease stages. The objectives of this study were to evaluate the effects of long-term exposure to cigarette smoke on endothelial function and smooth muscle-cell proliferation in pulmonary arteries of guinea pigs.</p> <p>Methods</p> <p>19 male Hartley guinea pigs were exposed to the smoke of 7 cigarettes/day, 5 days/week, for 3 and 6 months. 17 control guinea pigs were sham-exposed for the same periods. Endothelial function was evaluated in rings of pulmonary artery and aorta as the relaxation induced by ADP. The proliferation of smooth muscle cells and their phenotype in small pulmonary vessels were evaluated by immunohistochemical expression of α-actin and desmin. Vessel wall thickness, arteriolar muscularization and emphysema were assessed morphometrically. The expression of endothelial nitric oxide synthase (eNOS) was evaluated by Real Time-PCR.</p> <p>Results</p> <p>Exposure to cigarette smoke reduced endothelium-dependent vasodilatation in pulmonary arteries (ANOVA p < 0.05) but not in the aorta. Endothelial dysfunction was apparent at 3 months of exposure and did not increase further after 6 months of exposure. Smoke-exposed animals showed proliferation of poorly differentiated smooth muscle cells in small vessels (p < 0.05) after 3 months of exposure. Prolonged exposure resulted in full muscularization of small pulmonary vessels (p < 0.05), wall thickening (p < 0.01) and increased contractility of the main pulmonary artery (p < 0.05), and enlargement of the alveolar spaces. Lung expression of eNOS was decreased in animals exposed to cigarette smoke.</p> <p>Conclusion</p> <p>In the guinea pig, exposure to cigarette smoke induces selective endothelial dysfunction in pulmonary arteries, smooth muscle cell proliferation in small pulmonary vessels and reduced lung expression of eNOS. These changes appear after 3 months of exposure and precede the development of pulmonary emphysema.</p
    corecore