106 research outputs found

    Arf GTPase regulation through cascade mechanisms and positive feedback loops

    Get PDF
    AbstractArf GTPases, together with Rab GTPases, are key regulators of intracellular membrane traffic. Their specific membrane targeting and activation are tightly regulated in time and space by guanine nucleotide exchange factors (GEFs). GEFs are multidomain proteins, which are under tight regulation to ensure fully coordinated and accurate membrane traffic events. Recently, two Arf GEFs, Sec7 and Arno, have been shown to be part of Arf GEF cascades similar to the Rab GEF cascades. Both GEFs are autoinhibited in solution and require an active Arf molecule to be recruited to the membrane and to switch to an open conformation. As such, positive feedback loops, whereby the amount of Arf-GTP on a given organelle increases not linearly with time, can be established

    Packmem: a versatile tool to compute and visualize interfacial packing defects in lipid bilayers

    Get PDF
    The analysis of the structural organization of lipid bilayers is generally performed across the direction normal to the bilayer/water interface, whereas the surface properties of the bilayer at the interface with water are often neglected. Here, we present PackMem, a bioinformatic tool that performs a topographic analysis of the bilayer surface from various molecular dynamics simulations. PackMem unifies and rationalizes previous analyses based on a Cartesian grid. The grid allows identification of surface regions defined as lipid-packing defects where lipids are loosely packed, leading to cavities in which aliphatic carbons are exposed to the solvent, either deep inside or close to the membrane surface. Examples are provided to show that the abundance of lipid-packing defects varies according to the temperature and to the bilayer composition. Because lipid-packing defects control the adsorption of peripheral proteins with hydrophobic insertions, PackMem is instrumental for us to understand and quantify the adhesive properties of biological membranes as well as their response to mechanical perturbations such as membrane deformation

    Membrane fission by dynamin: what we know and what we need to know

    Get PDF
    Abstract The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion

    ContrĂŽle de l’assemblage des manteaux protĂ©iques COP par les petites protĂ©ines G Arf et Sar

    No full text
    Dans leur forme active, liĂ©e au GTP, les protĂ©ines G de la famille Arf et Sar sont liĂ©es aux membranes lipidiques et servent de points d’amarrage aux manteaux protĂ©iques COPI et COPII. Les manteaux protĂ©iques sont des assemblages organisĂ©s bidimensionnels qui couvrent les membranes intracellulaires pour les dĂ©former en vĂ©sicules de transport et sĂ©lectionner les protĂ©ines qui doivent ĂȘtre transportĂ©es. La forte activitĂ© d’hydrolyse du GTP dans les manteaux protĂ©iques pose le problĂšme de la dynamique de ces assemblages et plus prĂ©cisĂ©ment du lien entre l’état macroscopique du manteau, assemblĂ© ou dĂ©sassemblĂ©, et l’état microscopique de la protĂ©ine G, liĂ©e au GDP ou au GTP. La distribution temporelle et spatiale de la rĂ©action d’hydrolyse du GTP pourrait ĂȘtre dĂ©terminante pour le fonctionnement des manteaux

    Le cycle d'activation de la protéine G Rac à la surface de la membrane lipidique

    No full text
    Les protĂ©ines Rho comme toutes les petites protĂ©ines G lient les nuclĂ©otides Ă  guanine, GDP ou GTP. La rĂ©action d'activation des protĂ©ines Rho, qui correspond Ă  l'Ă©change d'un GDP par un GTP, est intrinsĂšquement trĂšs lente et nĂ©cessite la catalyse par des facteurs d'Ă©change spĂ©cifiques, les protĂ©ines Ă  tandem DH-PH. De plus, les protĂ©ines Rho sont ancrĂ©es Ă  la membrane via groupement prĂ©nyl mais sont en majoritĂ© solubilisĂ©es dans le cytosol par une protĂ©ine rĂ©gulatrice appelĂ©e GDI possĂ©dant une poche hydrophobe oĂč se loge le prĂ©nyl. Nous avons Ă©tudiĂ© le mĂ©canisme d'activation de Rac1, une protĂ©ine de la famille Rho, et le lien entre le cycle GDP/GTP et le cycle membrane/cytosol. Pour cela, nous avons reconstituĂ© in vitro l'activation de Rac1 sur liposomes Ă  partir du complexe Rac/GDI purifiĂ©. Nous avons montrĂ© que l'activation de Rac par le tandem DH-PH de la protĂ©ine Tiam1 nĂ©cessite la dissociation de Rac1 de GDI qui ne peut se faire qu'en prĂ©sence de lipides anioniques. Par ailleurs, l'ancrage de Rac Ă  la membrane favorisĂ© la rĂ©action d'activation suggĂ©rant un changement conformationnel du tandem DH-PH sur la membrane. La dissociation de GDI et l'ancrage de Rac-GDP Ă  la membrane rend Rac Ă©galement beaucoup plus sensible Ă  la glucosylation par la toxine lĂ©tale de Clostridium Sordelli. La prĂ©sence de Phosphatidyl SĂ©rine permet un recrutement membranaire du fragment catalytique de la toxine lĂ©tale et augmente trĂšs fortement son activitĂ© de glucosylation sur Rac. Cela met en Ă©vidence dans la protĂ©ine bactĂ©rienne un domaine trĂšs spĂ©cifique pour la Phosphatidyl SĂ©rine. L'ensemble de ces rĂ©sultats souligne l'importance des interfaces protĂ©ines-membrane dans le cycle d'activation de la protĂ©ine Rac.As all G proteins, Rho proteins bind guanine nucleotide, GDP or GTP. The activation reaction, which corresponds to the exchange of GDP by GTP, is intrinsically very slow and required catalysis by Rho specific exchange factors, containing a tandem of DH and PH domain. Moreover, Rho proteins are anchored at the lipidic membrane by a prenyl group, but are mostly soluble in the cytosol through the interaction of the prenyl with the hydrophobic pocket of a regulatory protein named GDI. We have studied the activation mechanism of Rac1, a Rho protein, and the link between the GDP/GTP cycle and the membrane/cytosol cycle. We have reconstituted Rac1 activation in vitro on liposomes using purified Rac/GDI complex. We showed that Rac activation by DH-PH tandem of Tiam1 required Rac dissociation from GDI, which can only occurs in the presence of anionic lipids. Moreover, the anchorage of Rac on the lipidic membrane facilitates the activation reaction suggesting a conformation change of the DH-PH tandem on the membrane surface. GDI dissociation and Rac-GDP membrane anchorage strongly facilitate the glucosylation of Rac by Clostridium Sordelli lethal toxin. The presence of Phosphatidyl Serine induces the recruitment lethal toxin to the membrane and strikingly enhances Rac glucosylation. A domain with a high specificity for Phosphatidyl Serine is present in this bacterial protein. Taken together, these results underline the importance of protein/lipid interactions in the Rac activation Cycle.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Un marchĂ© d’échange de lipides

    No full text
    Le cholestĂ©rol est synthĂ©tisĂ© dans le rĂ©ticulum endoplasmique (RE) puis transportĂ© vers les compartiments cellulaires dont la fonction en nĂ©cessite un taux Ă©levĂ©. Nous dĂ©crivons ici le mĂ©canisme de transport du cholestĂ©rol du RE vers le rĂ©seau trans golgien (TGN) par la protĂ©ine OSBP (oxysterol binding protein). Celle-ci prĂ©sente deux activitĂ©s complĂ©mentaires : elle arrime les deux compartiments, RE et TGN, en formant un site de contact oĂč les deux membranes sont Ă  une vingtaine de nanomĂštres de distance ; puis elle Ă©change le cholestĂ©rol du RE avec un lipide prĂ©sent dans le TGN, le phosphatidylinositol 4-phosphate (PI4P). Dans le RE, le PI4P est hydrolysĂ©, rendant le cycle d’échange irrĂ©versible. OSBP est donc au cƓur d’un marchĂ© d’échange de lipides dans lequel un cholestĂ©rol transportĂ© « coĂ»te » un PI4P. Des molĂ©cules Ă  activitĂ©s antivirales ou anticancĂ©reuses ont pour cible OSBP, suggĂ©rant une importance dans diffĂ©rents contextes physiopathologiques du cycle d’OSBP, dont les bases gĂ©nĂ©rales sont partagĂ©es par d’autres protĂ©ines transporteurs de lipides

    CCTα Commands Phospholipid Homeostasis from the Nucleus

    No full text
    International audienc
    • 

    corecore