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ABSTRACT The analysis of the structural organization of lipid bilayers is generally performed across the direction normal to
the bilayer/water interface, whereas the surface properties of the bilayer at the interface with water are often neglected. Here, we
present PackMem, a bioinformatic tool that performs a topographic analysis of the bilayer surface from various molecular dy-
namics simulations. PackMem unifies and rationalizes previous analyses based on a Cartesian grid. The grid allows identifica-
tion of surface regions defined as lipid-packing defects where lipids are loosely packed, leading to cavities in which aliphatic
carbons are exposed to the solvent, either deep inside or close to the membrane surface. Examples are provided to show
that the abundance of lipid-packing defects varies according to the temperature and to the bilayer composition. Because
lipid-packing defects control the adsorption of peripheral proteins with hydrophobic insertions, PackMem is instrumental for
us to understand and quantify the adhesive properties of biological membranes as well as their response to mechanical pertur-
bations such as membrane deformation.

INTRODUCTION

Lipid membranes are one of the main building blocks of
cells, and as such, they have been the focus of scientific in-
vestigations for a very long time. Although their primary
function is to define the boundaries of cellular compart-
ments, their extraordinary diversity in composition, notably
in lipid species (1,2), is also decisive for numerous cellular
events. Therefore, there is a growing interest in understand-
ing the connections between lipid membrane composition
and function.

One of the consequences of the remarkable lipid hetero-
geneity of cellular membranes is the imperfect arrangement
of their lipids in the form of a bilayer. These imperfections
create spots in the membrane at which the hydrophobic core
of the bilayer is exposed to the surrounding aqueous envi-
ronment, whether it is lumen, cytosol, or the extracellular
milieu. These voids, often referred to as lipid-packing de-
fects, are too small to lead to membrane poration, yet their
size is sufficient to selectively promote the binding of pe-
ripheral proteins harboring hydrophobic or amphipathic se-

quences to the membrane (3–5). In the case of amphipathic
helices, the lipid-packing defects tend to coalesce after
initial amino acid insertion to accommodate the full hydro-
phobic face of the helix (6). Therefore, the nature and initial
abundance of lipid-packing defects are critical for the ki-
netics of protein binding, but other factors are at play in
the thermodynamics of adsorption (5). Nevertheless, in the
few examples studied so far, there is a very good match be-
tween the abundance and depth of lipid-packing defects, as
assessed by Cartesian methods, and the adsorption of model
amphipathic helices (7,8).

Due to their small size and the intrinsic fluidity of lipid
bilayers, lipid-packing defects are difficult to characterize
experimentally. In general, their existence and their features
are deduced from indirect observations, such as the prefer-
ential partitioning of amphipathic proteins to defined sub-
cellular organelles or artificial membranes. Computational
methods such as molecular dynamics (MD) simulations,
on the other hand, have proven to be a powerful tool for
investigating this property with atomistic detail and in a
quantitative manner (6,9,10).

Most of the analyses that are routinely performed on MD
simulations of lipid bilayers focus on transbilayer properties
(e.g., density profiles, order parameters, lateral pressure
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profiles, etc.) but neglect the characterization of the surface
of lipid bilayers at the molecular level (8,9,11). This bias
arises for two reasons. First, integral membrane proteins
(in contrast to peripheral membrane proteins) have been
the main focus of computational efforts to characterize bio-
logical membranes; see, for example, (12). Second, the anal-
ysis of surface properties requires new computational tools
to quickly extract information on lipid-packing defects.
Tools that are used to identify cavities in proteins such as
surface-accessible area calculations provide an alternative
to identify lipid-packing defects (6). However, they are
very time consuming at the scale of a lipid membrane and
do not provide information on the depth of the defects.

We have recently developed a computational approach to
identify lipid-packing defects based on mapping of the
membrane surface according to a Cartesian grid. This
method has allowed us to investigate the effect of various
membrane parameters on interfacial properties, including
acyl chain mono- and polyunsaturation (8,13,14), mem-
brane curvature (7), and the presence of conical lipids or
of molecules against lipointoxication (15). The pivotal
role of interfacial voids has been suggested by a number
of recent investigations on disparate topics, including mem-
brane remodeling processes such as bending, fusion, and
fission (8,16–19) as well as the binding of peripheral pro-
teins, disaccharides, and nanoparticles (8,14,20).

Here, we present PackMem, a greatly optimized version
of this computational tool, with which interfacial voids in
any MD simulation of a lipid membrane or of an equivalent
interface can be readily characterized, both in size and
depth, and quantified. We have improved the source code
to 1) strongly reduce the computation time (a few seconds
per membrane frame) and 2) make the tool versatile; i.e.,
adaptable to different membrane types, including different
force fields (FFs) and different lipids. Considering the
ever-growing interest in cellular membranes and their inter-
actions with proteins and nanoparticles, PackMem should
provide a useful tool for investigating membrane interfacial
properties at the structural level to a large community of
computational scientists.

MATERIALS AND METHODS

Algorithm

Lipid-packing defects are defined as surface voids—that is, cavities be-

tween lipid polar heads where aliphatic atoms are accessible to external

molecules. By their very nature, these voids correspond to a volume but

can be also defined in terms of area upon projection on a surface. The

driving idea of the algorithm is to map the membrane surface according

to a grid parallel to the plane of the bilayer (Figs. 1 and 2). Looking at

the grid from above, we assign a value of 0 to each grid cell in which

the first atom that is vertically met is an aliphatic atom. Conversely, we

assign a value of 1 to all other cells—that is, cells in which the first

atom met vertically is a polar atom. In our analysis, only lipids are consid-

ered (water, ions, and any other molecules are ignored), and each leaflet is

treated separately.

Instead of looping over all grid cells and checking the nature (polar/apo-

lar) of the atom(s) in each cell, which is an approach that would be too

computationally expensive (because it would require a double-nested

loop over all grid cells and all atoms), we opted to loop over all atoms

and check which grid cells overlap with each atom. In detail, the algorithm

starts by constructing a grid of 1� 1 Å resolution and follows these steps in

pseudo-code:

initialize a matrix M (representing the grid) with 0

for atom in all lipid atoms of one leaflet

if atom z coordinate is below d Å of the central glycerol atom

of the same lipid

go to next iteration # the grid cells overlapping the atom

# (M[i,j]) stay at the same value

else

if atom is aliphatic

add 0.001 to the grid cells (M[i,j]) overlapping the atom

else

# the atom is polar

add 1 to the grid cells (M[i,j]) overlapping the atom

endif

endif

endfor

Note that this pseudo-code applies to the upper leaflet but can be used for

the lower leaflet by reversing the z direction. The grid spacing is fixed to

1 Å, which is computationally tractable and sufficiently fine to have a pre-

cise measure of packing defects.

PackMem determines lipid-packing defects from the top of the leaflet

and uses a z-value corresponding to the maximal depth level. This value

is not fixed for each grid cell but is dependent on the central glycerol

atom of the examined lipid plus a specific distance d. As such, the maximal

depth is dependent on each lipid z-position, making PackMem adapted to

moderately deformed membranes (such as bilayers undergoing undula-

tions). The choice of the d-value defines the threshold between deep and

FIGURE 1 Cartesian rules for atom mapping. (A) The definition of grid

points overlapping with an atom is shown. The grid is represented by black

lines, a random atom projected on the surface of the grid is represented as a

black circle, and the overlapping grid points are marked with gray crosses.

Any grid point partially or fully overlapping with the atom will be ticked by

a gray cross. Each gray cross represents a grid point in which the algorithm

will add 0.001 (if the atom is aliphatic and not too deep below the glycerol)

or 1 (if the atom is polar) (see Algorithm description). (B) An example of

clusters of elementary defects found by the connected component algorithm

is shown. Once PackMem has computed the three matrices M_deep,

M_shallow, and M_all (see Algorithm), each matrix will present elemen-

tary defects (represented by gray crosses), and some of them will be contig-

uous. The purpose of the connected component algorithm is to merge these

neighboring elementary defects into clusters. Each cluster is then consid-

ered as a packing defect whose area can be computed. In general, a grid

point of 1 Å2 is used. Thus, cluster A is 2 Å2, cluster B is 7 Å2, and cluster

C is 4 Å2 in this example. Note that the algorithm uses an eight-connectivity

(two grid points located diagonally are considered neighbors).
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shallow packing defects. In general, we recommend setting d ¼ 1 Å, which

is a choice that has provided a good match with experimental data in pre-

vious studies (7,13).

The algorithm needs a list of aliphatic and nonaliphatic atoms. For com-

mon phospholipids, all carbon atoms below the ester moieties of the sn-1

and sn-2 chains are considered to be aliphatic. Another key parameter in

the algorithm is the definition of overlap: for a given atom, all grid points

that are within its radius are considered to be overlapping grid points

(Fig. 1 A). Therefore, a list of atom radii has to be provided to the program.

We recommend using the minimum of the Lennard-Jones function (corre-

sponding to Rmin distance) for the radii, as in previous studies (7,13).

PackMem provides the list of aliphatic atoms as well as the atom radii for

many common all-atom phospholipids and sterols (ergosterol and choles-

terol), but the user can easily add new lipids by including these two

parameters.

At the end of the procedure, the program builds a matrix ‘‘M’’ filled in

with numbers (n), which can be interpreted in the following way:

Grid cells for which n ¼ 0. This value implies that no atom (polar or

aliphatic) has been encountered up to d Å below the glycerol (this

value is configurable; it is set at d ¼ 1 Å by default). Therefore, these

grid cells correspond to deep voids where aliphatic atoms are deeper

than d Å below the central atom of glycerol and vertically accessible

from the outside. These grid cells are assigned as ‘‘deep’’ elementary

defects (see Fig. S1).

Grid cells for which 0 < n < 1. This range implies that some aliphatic

atoms have been encountered between z_max_lipid (the highest

z-value for each lipid) and d Å below the glycerol level. Therefore,

these grid cells correspond to accessible aliphatic atoms that are

not very deep within the membrane interior. These grid cells are as-

signed as ‘‘shallow’’ elementary defects (see Fig. S1).

Grid cells for which n R 1. Such a value implies that a polar atom has

been encountered. The corresponding cells, which represent the vast

majority of the surfaces under inspection, do not represent any

elementary defect.

In our algorithm, deep and shallow defects are treated separately. From

the initial matrix M and the lipid-packing defect type chosen by the user,

PackMem builds one of the following binary matrices. Matrix ‘‘M_deep’’

assigns 1 for grid cells with n ¼ 0 and 0 for all other cells. Matrix

‘‘M_shallow’’ assigns 1 for grid cells with 0< n< 1 and 0 for all other cells.

Last, matrix ‘‘M_all’’ ignores the difference between deep and shallow

defects and is built from the union of M_deep and M_shallow. We call

these defects ‘‘all.’’ The user will choose the type of lipid-packing defect

(deep, shallow, or all) to be processed with the PackMem tool. In all cases,

we merge adjacent elementary defects using a connected component

algorithm (21) to obtain the actual defects—that is, membrane patches

made by grid cells that are contiguous and that display the same binary

value (see Fig. 1 B).

At the end, our program provides the following outputs:

1) A list of defects (with an identification for each one).

2) The area and the approximate (x,y) position of each defect.

3) Output files in Protein Data Bank (PDB) format for each leaflet contain-

ing the coordinates of all elementary defects. The PDB field ‘‘resSeq’’ is

used to store the defect identification. Note that the z-coordinate of each

elementary defect is assigned to the highest z-value of all lipid atoms.

This arbitrary assignment allows the user to watch the defects and the

membrane at the same time using a molecular visualization software

such as visual MD (22) or PyMOL (23).

4) A PDB file for each leaflet in which the B-factor column is used to list all

n-values from the initial matrix M.

The area in (2) is used to determine the statistical distribution of the size

of lipid-packing defects (see Statistical Analysis). Because the number of

lipid-packing defects obtained from a single bilayer snapshot is too low

to give robust statistics, the analysis is performed on many snapshots of

MD trajectories (see below). The PDB file (3) is used to overlay the packing

defects with the PDB of the bilayer (Fig. 2 C; Fig. S2). The PDB file (4)

allows the user to represent the full initial matrix ‘‘M’’ as a two-dimensional

image in which the B-factor color settings of the chosen molecular graphics

program (e.g., PyMOL) are used to represent the n-value (Fig. S2).

PackMem is written in the Python language and provides specific li-

braries. Python version 2.6 or above is needed to execute the script

PacMem.py. The source code of the PackMem tool package can be obtained

from the following GitHub repository: https://github.com/rogautier/

packmem. Several PDB files of membranes as well as parameters files

for different FFs are provided in the archive.

The code has been optimized to strongly reduce the calculation time.

This was achieved through rewriting several functions, optimizing memory

resources, handling exceptions, and collecting different data formats (text

or PDB). For example, the average calculation time on a regular work

FIGURE 2 Example of packing defect analysis

for a pure POPC bilayer. In all panels, the light

gray grid represents the matrix M at 1 Å resolution.

The aliphatic atoms are colored in yellow, and the

other atoms are colored in gray (including polar

head and glycerol group). (A) A three-dimensional

view is shown. (B) A top view is shown of a patch

of upper leaflet. (C) The same view as in (B) with

the coordinates of the various elementary packing

defects is shown. Deep, shallow, and all packing

defects are colored in blue, green, and red,

respectively.
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station for a membrane frame (250 dimyristoyl-phosphatidylcholine

(DMPC) lipids with Berger force field) was 17.7 5 0.4 s with the previous

method compared to 2.68 5 0.06 s with PackMem, corresponding to a

sixfold gain in speed. Overall, the analysis of a trajectory of 300 ns corre-

sponding to 3000 frames requires 2 hr 15 min with PackMem, as compared

to 15 hr with the previous method.

In the PackMem website (http://packmem.ipmc.cnrs.fr), we provide

scripts to concatenate the outputs of PackMem and to extract the p constant.

We also provide a ‘‘mini-HOWTO’’ on how to build new input files for

lipids not provided here. Last, we provide parameters files for several lipids

and for three lipid FFs: united-atom as Berger (24), all-atom as Chemistry at

Harvard Macromolecular Mechanics 36 (CHARMM36) (25), and coarse-

grained as Martini (26). Note that for this last force field, the user should

carefully select the glycerol level, which is only represented by two beads.

We recommend selecting the GL2 bead (often the lowest of both). By

comparing various bilayers simulated by different FFs, we observed an

excellent correlation between the lipid-packing defect distribution in all-

atom/united-atom FFs and in coarse-grained FFs except for shallow defects,

which are overestimated in the Martini force field (7,27).

Statistical analysis

The goal of PackMem is to provide the distribution of packing defect areas

according to a given lipid composition and set of conditions (temperature,

pressure, ionic strength, curvature, surface tension, etc.). Fig. 3, A and B

show some examples of distribution for flat membranes under standard con-

ditions. To obtain robust statistics for a given lipid composition and set of

conditions, one typically needs to collect the packing defects from a few

thousand snapshots. Such snapshots can be extracted from an individual

MD trajectory of a few hundred nanoseconds (see below). After a given

equilibration time (typically a few tens to hundreds of nanoseconds), all

packing defects from frames separated by 100 ps of a trajectory are deter-

mined, and their area is accumulated in a single vector (for both upper and

lower leaflets). From this vector, a histogram of packing defect areas is then

computed. The histogram bin width has to be carefully chosen to ensure a

fair comparison between different simulations. Because the grid resolution

is 1 Å2, we generally recommend the use of 1 Å for the bin width.

The lipid-packing defect area follows an exponential distribution and can

be conveniently fitted to a monoexponential decay (6,13):

pðAÞ ¼ b � e�D�A ¼ b � e�A=p; (1)

where p(A) is the probability of finding a lipid-packing defect with an area

A, b is the pre-exponential factor (a value that we do not use any further in

the analysis), D is the exponential decay in units of Å�2, and p is the pack-

ing defect constant in units of Å2.

The fit is independently performed for the three types of packing defects

(deep, shallow, and all). Indeed, some membranes are more prone to forming

deep lipid-packing defects, whereas others aremore prone to forming shallow

lipid-packing defects (8). Note that D and p are interchangeable parameters

(p is the inverse of D). We prefer to report the packing defect constant p

(Fig. 3), which has a more intuitive meaning, as it corresponds to a surface.

The higher the p constant, the more abundant are the large lipid-packing de-

fects. Because very small defects tend to be equally distributed whatever the

conditions (e.g., lipid composition, curvature, etc.) and defectswith low prob-

ability converge very slowly, we recommend performing the fit on defects

larger than 15 Å2 and for probabilities ofR10�4. Using these rules,pdeep typi-

cally ranges between6and10 Å2,pshallow ranges between7and15 Å
2, andpall

ranges between 9 and 20 Å2 for phospholipid bilayers made of a single lipid

species (seeFig. 3).Anexampleof the effect of temperature is shown inFig. 4.

In previous work (7,13,15,28), the error on p was determined from the

error on the linear fit of the logarithmic plot, thus considering the logarith-

mic value of p(A). However, we believe that an error determined by block

averaging, as reported here, is more reliable, and we encourage the users to

follow this procedure in the future. The trajectory is divided into three equal

blocks, and the error is the SD over the three blocks. Note that each block

has to be long enough (see below) to give robust results.

The statistical significance of the packing defect calculation depends on

the size and length of the MD simulations. To obtain reasonable error values

by block averaging (typically below 0.5–0.6 A2 for deep defects), the total

FIGURE 3 Lipid-packing defect probability

versus lipid-packing defect size. The plots were

determined from thousands of MD snapshots for

DMPC (blue), POPC (black), DOPC (magenta),

and DOPC/DOG (yellow) bilayers using a Berger

force field (A) or a CHARMM36 FF (B). The tra-

jectories were divided into three parts (þ, x,

and o) using the block-averaging method. Straight

lines are linear fits for defects larger than 15 Å2

and for probabilities ofR10�4. The packing defect

type is all (deep plus shallow). (C) Defect size con-

stants for deep, shallow, and all packing defects are

shown as determined from linear fits similar to that

shown in (A) and for bilayers of the indicated

composition with different FFs (Ber ¼ Berger;

C36 ¼ CHARMM36).
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number of defects found in the two leaflets over a trajectory has to be at

least 105. For a given number of lipids and simulation lengths, this number

varies according to the bilayer composition and external conditions. Impor-

tantly, the user has to carefully monitor deep lipid-packing defects, which

are less abundant and thus much slower at converging than shallow or

‘‘all’’ lipid-packing defects. As a guideline, we recommend simulating

membranes composed of at least 128 lipids per monolayer and performing

the analysis for at least 300 ns (after proper equilibration for a few tens of

nanoseconds). We also recommend a temporal resolution of one PDB file

every 100 ps to ensure the absence of correlation between the defects

from different frames because the lifetime of lipid-packing defects is typi-

cally <20 ps. The lifetime of lipid-packing defects was calculated from

50 ns simulations with a 1 ps sampling step. With this time step, the defects

can be readily tracked from consecutive time frames so that we do not miss

them by diffusion. The analysis was performed on packing defects with an

average size above 15 Å2 and with a lifetime above 5 ps (Fig. S3). Using

these settings, the user can obtain robust statistics on fluid bilayers using

all-atom FFs. For example, a palmitoyl-oleoyl-phosphatidylcholine

(POPC) bilayer of 288 lipids simulated for 300 ns (after 100 ns of equilibra-

tion) displayed a total of 174,599 deep packing defects for the whole trajec-

tory (3000 frames, including the upper and lower leaflets).

RESULTS AND DISCUSSION

Three examples of the use of PackMem are given here to
illustrate how this tool can provide insight into membrane
surface properties.

Membrane simulations using different FFs

We used PackMem to compare how two widely used FFs
(namely Berger (24) and CHARMM36 (25)) describe the
interfacial properties of membranes of defined composition.
This is particularly timely because the choice of a particular
force field is a key step in membrane simulations. Several
comparisons have been recently discussed (29–31).

We used four bilayer systems (288 lipids, 144 by leaflet):
pure DMPC (C14:0/C14:0), pure POPC (C16:0/C18:1),
pure dioleoyl-phosphatidylcholine (DOPC) (C18:1/C18:1),
and mixed DOPC:dioleoylglycerol (DOG) at a 85:15 molar
ratio. The Berger model (24) in combination with the half-e
double-pairlist optimized potentials for liquid simulations
method (32) was used for all lipids. The parameters
for DOG were validated in a previous study (9). These
MD simulations were performed using the software
GROMACS (Groningen Machine for Chemical Simula-
tions) 4.6 (33) with the same parameters as those used
previously (13,14).

We used the CHARMM36 force field (FF) (25) to
create the same systems using the CHARMM graphical
user interface (CHARMM-GUI) tool (34) and the soft-
ware GROMACS 5 (35). The DOG topology for the

FIGURE 4 Effect of temperature on lipid-pack-

ing defects. (A) A plot of lipid-packing defect

size constants (deep in blue, shallow in green) for

DPPC membrane simulations is shown at different

temperatures. (B and C) The top view of a mem-

brane patch of DPPC is shown at gel phase ((B);

300 K) and in the liquid disordered state ((C);

333 K) with coordinates of every elementary deep

and shallow packing defect colored in blue and

green, respectively. Aliphatic atoms are colored in

yellow. All other lipid atoms are in gray.
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CHARMM36 FF was constructed in the same manner as
before (9). The duration of the simulations was 400 ns,
and the analysis was performed on the last 300 ns. For the
MD simulations with GROMACS 5.0.6, we used the param-
eters recommended in CHARMM-GUI (34): we used the
transferable intermolecular potential with three points water
model (36), and the simulations were integrated with a 2 fs
timestep. Van der Waals interactions were switched to zero
between 1.0 and 1.2 nm, and particle mesh Ewald was used
to evaluate electrostatic interactions. All bonds to hydrogen
were constrained using the linear constraint solver algo-
rithm (37). The v-rescale thermostat (38) was used to main-
tain temperature with a coupling time constant of 1.0 ps. The
Parrinello-Rahman barostat (39) was used to maintain a
pressure of 1.0 bar with a compressibility of 4.5 � 10�5

and a coupling time constant of 5.0 ps. The pressure was
maintained semi-isotropically.

The averages and error bars were determined according to
the block-averaging method (see above).

Fig. 3, A and B show the frequency of all lipid-packing
defect versus lipid-packing defect size, as determined
from thousands of MD snapshots using the Berger FF
(Fig. 3 A) and CHARMM36 FF (Fig. 3 B) for DMPC
(blue), POPC (black), DOPC (magenta), and DOPC/DOG
(orange) bilayers. Fig. 3 C reports the defect size constants
p in the corresponding simulations for each packing defect
type (pdeep, pshallow, and pall). The two FFs show a similar
trend. First, there is an increase in lipid-packing defects as
a function of the number of monounsaturated C¼C bonds
(DPMC < POPC < DOPC). Second, DOG, a lipid with a
small polar head, increases the abundance of lipid-packing
defects (DOPC < DOPC/DOG). Fig. S4 shows representa-
tive snapshots of packing defects on different membranes
and the gradual increase in the surface area of the defects
from DMPC (A) to DOPC/DOG (D). The p values are
similar for the CHARMM36 FF compared to the Berger
FF but with slightly lower values for the Berger FF. The
small differences observed between both FFs are probably
due to the unsaturation parameters (DMPC, POPC, and
DOPC with 0, 1, and 2 monounsaturations, respectively)
used in both FFs and may be a consequence of the fact
that CHARMM36 FF has all-atom resolution, including
hydrogen atoms, whereas the Berger FF has united-atom
resolution (with hydrogen atoms not explicitly included).
These small differences notwithstanding, PackMem appears
to be an efficient tool for determining lipid-packing proper-
ties independently of the force field. In the future, it should
provide an additional approach to comparing various lipid
species in terms of packing properties as well as help in
the development of new lipid FFs.

Packing defects at different temperatures

As a second application, we computed lipid-packing defects
in dipalmitoylphosphatidylcholine (DPPC) bilayers for

varying temperatures. The DPPC simulations are based on
the CHARMM36 force field (25) and the initial structure
provided on the LipidBook website (40) for the gel simula-
tion and on the CHARMM-GUI website (34) for the other
simulations. The systems contained 400 DPPC molecules
for the gel (or 300 K) simulation and 288 DPPC for the
simulations at 323, 333, and 343 K. All simulations were
carried out for 400 ns (the analysis was carried out on
the last 300 ns) using GROMACS 5.0.6 (35) and with the
same parameters as those used in the previous section.

As shown in Fig. 4 A, pdeep and pshallow increase with
temperature as expected because of the effect of thermal
motion on lipid packing. We observe a sharp difference be-
tween 300 vs. 323, 333, and 343 K. Indeed, DPPC formed a
gel phase (Lb) at 300 K, explaining the very low p con-
stants, whereas DPPC was in the liquid disordered state
(La) at 323, 333, and 343 K. The convergence of the p

constants for the gel phase was low for deep defects
because the chosen thresholds (defect area >10 Å2 and
probability R10�4) are more adapted to the fluid phase
and thus lead to poor statistics for such a system. However,
it is important to keep the same thresholds when comparing
different systems. Raising the temperature to 323 K results
in the appearance of lipids in the liquid disordered state
(La), which translates into a sudden jump of the p con-
stants. This jump is larger than what is observed from
323 to 333 K or 333 to 343 K, at which the whole DPPC
membrane remains in the liquid disordered state (La).
Fig. 4, B and C show representative snapshots of both
deep (blue) and shallow (green) packing defects during
the simulation in the gel phase at 300 K (Fig. 4 B) and in
the liquid disordered state at 333 K. We observe much
fewer packing defects (in terms of number and size) for
the gel phase (300 K) than the liquid disordered state at
333 K. In summary, PackMem reproduces an expected
result: in the gel phase, lipids are tightly packed, resulting
in very few and small packing defects.

Packing defects in membranes of complex
composition

As a last application, we used PackMem to determine the
distribution of lipid-packing defects in more biologically
relevant membrane simulations. Klauda and co-workers
have created computational models aimed at mimicking
three specific organelles from the yeast Saccharomyces cer-
evisiae: the plasma membrane (PM), which acts as the cell’s
protective barrier; the endoplasmic reticulum (ER), where
many complex synthesis reactions take place; and the
trans-Golgi network (TGN), an organelle in which an
intense exchange of material takes place (41). These model
membranes differ by the relative amounts of ergosterol,
phosphatidic acid, phosphatidylcholine, phosphatidyletha-
nolamine, phosphatidylserine, and phosphatidylinositol as
well as by the acyl chain composition of the various
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phospholipids, as determined by experimental methods. We
used PackMem to compare the packing defects in the PM,
TGN, and ER simulations.

Fig. 5 A shows the values of pdeep and pshallow for the
three simulations. We observe the same trend for TGN
and ER membranes. pdeep is higher at the TGN/ER than at
the PM, whereas an opposite trend is observed for pshallow,
which is higher at the PM than at the TGN/ER. Thus, the
TGN and ER are more prone to displaying deep voids in
their interfacial membrane region, whereas the PM is
more prone to displaying regions of shallow hydrophobic
exposure. Fig. 5 B shows the mapping of both packing de-
fects (deep and shallow in blue and green, respectively)
for a frame during the PM simulation. We observe many
shallow defects with large size and few deep defects with
small size. The opposite is observed with the TGN frame
(Fig. 5 C). Importantly, these contrasting traits fit very
well with the different capacities of the two organelles
to host peripheral proteins with amphipathic helices, as

observed experimentally (42). Proteins with helices of the
amphipathic lipid-packing sensor motif family (43,44)
insert preferentially in vesicles arising from the Golgi. In
contrast, a-synuclein adsorbs at the surface of vesicles
arising from the PM (8). At the molecular level, this differ-
ence is explained by the different chemistry of these two
amphipathic helices. The hydrophobic face of amphipathic
lipid-packing sensor motifs is made of bulky residues,
which should readily insert into deep lipid-packing defects,
such as those found at the TGN. The hydrophobic face of
a-synuclein contains small residues, which should be
more adapted to shallow lipid-packing defects, such as those
found at the PM (45). Thus, PackMem is able to analyze
complex membrane systems and provides unique informa-
tion regarding their interfacial properties. It must be noted
that these membrane simulations are not asymmetric in
terms of leaflet composition. It will be interesting to use
PackMem on asymmetric membranes to be closer to more
realistic biological membranes.

FIGURE 5 Lipid-packing defects in biological

membranes. (A) A plot of packing defect size con-

stants (deep in blue, shallow in green) in mem-

branes of complex compositions (PM, plasma

membrane; TGN, trans-Golgi network; ER, endo-

plasmic reticulum). (B) The top view of a PM patch

is shown with the coordinates of every elementary

packing defect. Blue, deep; green, shallow. (C) The

same as in (B) is shown for a TGN membrane

patch. The aliphatic atoms are colored in yellow,

and all other lipid atoms are in gray.
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CONCLUSIONS

PackMem identifies some striking differences between
membranes of different shape or composition that cannot
be deduced from other types of analyses. It puts the
emphasis on the interfacial region and does not time-
average the behavior of lipid atoms in this region but rather
takes advantage of many snapshots. Given the complexity
of biological membranes and their exposure to many
external constraints (e.g., tension, curvature, heat, pH,
etc.), PackMem should improve our understanding at the
molecular level of the adaptation between membrane
composition and membrane function.

SUPPORTING MATERIAL

Four figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(18)30762-8.

AUTHOR CONTRIBUTIONS

R.G. conceived the method. R.G. and A.B. developed the PackMem tool,

and P.F.F. contributed the connected component routine. A.B. performed

the packing defects at different temperatures. R.G. performed the force field

comparison and the packing defects in membranes of complex composition.

M.L.T. analyzed the packing defect lifetime. P.F.F. performed the different

tests for the error analysis. R.G., P.F.F., S.V., and B.A. wrote the article. All

authors read and commented on the article.

ACKNOWLEDGMENTS

We thank J. Klauda and V. Monje-Galvan for sharing the yeast membrane

trajectories.

This work was supported by the European Research Council (advanced

grant ERC 268 888) and by the Agence Nationale de la Recherche

(ANR-11-LABX-0028-01 and ANR-13-BSV2-0013). S.V. acknowledges

support by the Swiss National Science Foundation (#163966). This

work was performed using high-performance computing resources

from Grand Equipement National de Calcul Intensif – Centre Informatique

National de l’Enseignement Sup�erieur (grants c2016077362 and

A0020707362).

REFERENCES

1. Holthuis, J. C., and T. P. Levine. 2005. Lipid traffic: floppy drives and a
superhighway. Nat. Rev. Mol. Cell Biol. 6:209–220.

2. van Meer, G., D. R. Voelker, and G. W. Feigenson. 2008. Membrane
lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol.
9:112–124.

3. Zhang, L., M. Rajendram,., Q. Cui. 2016. Ionic hydrogen bonds and
lipid packing defects determine the binding orientation and insertion
depth of RecA on multicomponent lipid bilayers. J. Phys. Chem. B.
120:8424–8437.

4. Jackson, C. L., L. Walch, and J. M. Verbavatz. 2016. Lipids and
their trafficking: an integral part of cellular organization. Dev. Cell.
39:139–153.

5. Hatzakis, N. S., V. K. Bhatia, ., D. Stamou. 2009. How curved mem-
branes recruit amphipathic helices and protein anchoring motifs. Nat.
Chem. Biol. 5:835–841.

6. Cui, H., E. Lyman, and G. A. Voth. 2011. Mechanism of membrane
curvature sensing by amphipathic helix containing proteins. Biophys.
J. 100:1271–1279.

7. Vanni, S., H. Hirose, ., R. Gautier. 2014. A sub-nanometre view of
how membrane curvature and composition modulate lipid packing
and protein recruitment. Nat. Commun. 5:4916.

8. Pinot, M., S. Vanni,., H. Barelli. 2014. Lipid cell biology. Polyunsat-
urated phospholipids facilitate membrane deformation and fission by
endocytic proteins. Science. 345:693–697.
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