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Review

Membrane fission by dynamin: what we know and
what we need to know
Bruno Antonny1, Christopher Burd2, Pietro De Camilli3, Elizabeth Chen4, Oliver Daumke5, Katja

Faelber5, Marijn Ford6, Vadim A Frolov7,8, Adam Frost9, Jenny E Hinshaw10, Tom Kirchhausen11,12,

Michael M Kozlov13, Martin Lenz14, Harry H Low15, Harvey McMahon16, Christien Merrifield17, Thomas

D Pollard18, Phillip J Robinson19, Aurélien Roux20,*,† & Sandra Schmid21

Abstract

The large GTPase dynamin is the first protein shown to catalyze
membrane fission. Dynamin and its related proteins are essential
to many cell functions, from endocytosis to organelle division and
fusion, and it plays a critical role in many physiological functions
such as synaptic transmission and muscle contraction. Research of
the past three decades has focused on understanding how
dynamin works. In this review, we present the basis for an emerg-
ing consensus on how dynamin functions. Three properties of
dynamin are strongly supported by experimental data: first,
dynamin oligomerizes into a helical polymer; second, dynamin
oligomer constricts in the presence of GTP; and third, dynamin
catalyzes membrane fission upon GTP hydrolysis. We present the
two current models for fission, essentially diverging in how GTP
energy is spent. We further discuss how future research might
solve the remaining open questions presently under discussion.
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Introduction

Membrane vesicles carry cargo between cellular organelles, into and

out of the cell. In the final step of endocytic vesicle biogenesis, the

sides of a tubular membrane are brought into close apposition, lead-

ing to an amazing choreography of events, including the recruit-

ment, assembly, and activation of numerous endocytic proteins that

ultimately catalyze membrane fission. This process has fascinated

cell biologists, biochemists, and physicists alike, due to its central

importance to cell function.

In 1989, a GTPase called dynamin was discovered (Shpetner &

Vallee, 1989) that functions at the heart of endocytic vesicle fission

in plant and animal cells. Dynamin possesses the remarkable prop-

erty of assembling into contractile helical polymers that wrap

around the neck of a budding vesicle. The field has focused on how

constriction of this helix contributes to severing the membrane to

release the vesicle. Experimental validation of this hypothesis was

more complex than expected, so many variations to this first, simple
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constriction model have been proposed and debated to explain

exactly how dynamin performs its function.

A large family of related enzymes, including some in prokary-

otes, participates in membrane remodeling events. For example,

Vps1 in yeast is thought to catalyze fission of endosomal membrane

tubes (Chi et al, 2014) and may, in addition, act in endocytic events

(Smaczynska-de et al, 2010). Dynamin-related protein 1 (DRP1) and

its yeast homolog DNM1 are key molecules involved in mitochon-

drial scission (Legesse-Miller et al, 2003; Ingerman et al, 2005;

Mears et al, 2011; Koirala et al, 2013). The topologically opposite

reaction—membrane fusion—is mediated by many dynamin-like

proteins (Praefcke & McMahon, 2004; van der Bliek et al, 2013):

Mitofusins drive mitochondrial outer membrane fusion and optic

atrophy 1 (OPA1) fusion of the inner membrane (Ban et al, 2010);

atlastins catalyze fusion of the ER membrane (Hu et al, 2009; Orso

et al, 2009). Most of the dynamin-like proteins catalyze either fis-

sion or fusion, but Vps1, a fission catalyzer, was proposed to be

bifunctional and to also catalyze fusion (Peters et al, 2004). Also in

plants, dynamin-related proteins have been implicated in cell divi-

sion (Kang et al, 2003), organelle division (Arimura & Tsutsumi,

2002; Gao et al, 2003; Miyagishima et al, 2003), and endocytosis

(Fujimoto et al, 2010). In prokaryotes, functions related to the

membrane stress response (Sawant et al, 2015) or the shedding of

vesicles to the environment (Michie et al, 2014) were proposed to

rely on dynamin-related proteins.

After almost 30 years of research on dynamin, recent struc-

tural analyses of dynamin family members and in vivo and

in vitro data on dynamin activities help to better understand the

mechanism by which dynamin promotes membrane fission. We

decided to write this review article with the aim to first present the

current state of the field and to then outline where the field is heading

and which issues on dynamin function are still being discussed.

What we know: dynamin is a GTP-dependent fission
machine that constricts membrane necks

Dynamin is a 100 kDa GTPase composed of the GTPase domain, the

stalk consisting of a long four helix bundle, a bundle signaling

element (BSE), which is a flexible connector between the GTPase

domain and the stalk, a phosphoinositide-4,5-bisphosphate (PIP2)-

binding pleckstrin homology (PH) domain, which is connected to

the other tip of the stalk, and a proline-rich domain (PRD)

(see Fig 1). Dynamin partners that have SH3 domains bind specifi-

cally the PRD. The unstructured PRD is connected to the BSE and

extends beyond the GTPase domain. Dynamin has three isoforms in

mammals: dynamins 1 and 3, which are highly expressed in

neurons, where dynamin 1 represents by far the predominant

isoform, and dynamin 2, which is ubiquitously expressed. Most of

the findings below have been shown for dynamins 1 and 2.

Dynamins have three well-established properties. (i) They self-

oligomerize into helices, surrounding a membrane tube. (ii) Nucleo-

tide-driven conformational changes lead to a constriction of the

polymer and of the membrane beneath. (iii) Dynamins induce

fission of the membrane necks in a manner dependent on GTP

hydrolysis.

Below, we briefly describe the major findings related to these

three properties.

Dynamin oligomerizes at the surface of membranes into helices

The first essential property of dynamin is its capacity to oligomerize

into lock-washer-like rings or a cylindrical helix (Hinshaw &

Schmid, 1995). Such oligomers were first observed at the non-

permissive temperature in electron micrographs around the neck of

plasma membrane buds in the temperature-sensitive shibire mutant

in Drosophila (Koenig & Ikeda, 1989). These structures were shown

to be made of dynamin by immune staining of synaptosomes

treated with GTPcS (Takei et al, 1995). This oligomerization

explains the membrane tubulation activity of dynamin (Sweitzer &

Hinshaw, 1998; Takei et al, 1999), as well as the property to associ-

ate with tubular templates, such as narrow membrane tubes (Roux

et al, 2010), microtubules (Shpetner & Vallee, 1989), and lipid

nanorods (Stowell et al, 1999; Marks et al, 2001), which facilitate

its assembly. This tubulation activity of dynamin is proposed to

promote membrane curvature at the endocytic pits, as clathrin-

coated pit necks are larger when dynamin recruitment is inhibited

(Shupliakov et al, 1997; Newton et al, 2006). Dynamin oligomeriza-

tion in solution is favored by binding to non-hydrolyzable analogs

of GTP, such as GMPPCP, GTPcS (Warnock et al, 1996), or

GDP•AlF4� (Carr & Hinshaw, 1997), while GTP hydrolysis favors

disassembly of the dynamin oligomers and release of its subunits

from the membrane (Warnock et al, 1996; Marks et al, 2001;

Danino et al, 2004).

In the absence of nucleotide, dynamin assembles into a helical

coat of 50 nm outer diameter with a helical pitch between 10 and

20 nm (see Figs 1 and 2), surrounding a membrane tubule of

10 nm radius (at the mid-plane of the membrane) (Sweitzer &

Hinshaw, 1998; Takei et al, 1998, 1999; Chen et al, 2004; Danino

et al, 2004). The polymer has an outer diameter of approximately

50 nm, with a helical pitch between 10 and 20 nm (see Figs 1

and 2). Cryo-EM revealed that the dynamin polymer unit is an

anti-parallel dimer, with the GTPase domains facing outside and

the PH domains on the inside, bound to the membrane (Zhang &

Hinshaw, 2001; Chen et al, 2004; Mears et al, 2007). Crystallo-

graphic data also support this picture (see Fig 1A). Non-

oligomerizing mutants could be crystallized in an anti-parallel

dimeric form (Faelber et al, 2011; Ford et al, 2011). Dimerization

is mediated by the stalks, which form a cross (see Fig 1A). The

two GTPase domains are linked to one side of the cross whose

other side is linked to the PH domains. Interactions between the

stalk dimers drive the assembly into the helical polymer of the

expected size, as seen by molecular dynamics of the assembly

process (Faelber et al, 2011), identification of the position of

mutated residues in non-oligomerizing mutants (Faelber et al,

2011; Ford et al, 2011), and structural insight into the tetrameric

form of dynamin 3 (Reubold et al, 2015). Recent quantitative

in vivo data also show that dynamin polymerizes into oligomers of

varying size at the neck of clathrin-coated pits (Cocucci et al,

2014; Grassart et al, 2014).

Even though the exact interactions between subunits are not

conserved throughout the dynamin superfamily, the basic assembly

properties (formation of helical polymers) are shared by members

of the dynamin superfamily from bacteria to mammals, as revealed

by structural studies of dynamin-like proteins such as BDLP, Drp1/

Dnm1, and Mgm1/OPA1 (Low & Löwe, 2006; Low et al, 2009; Ban

et al, 2010; Mears et al, 2011; Abutbul-Ionita et al, 2012; Frohlich

et al, 2013).
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Figure 1. Structure and assembly of dynamin.
(A) Crystal structure of the dimer and of the tetramer, showing the interfaces required for assembly. A schematic representation shows how the tetramers further assemble
into a helix, showing the basic CIS-tetramer and TRANS-tetramers. (B) The original constriction model for dynamin-mediated membrane fission, as suggested by the helical
structure of dynamin.
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Dynamin is a GTP hydrolysis-dependent, membrane fission catalyzer

The essential function of dynamin is to use energy from GTP hydro-

lysis to sever membrane tubules. Fission of clathrin-coated pits from

the plasma membrane is defective at neuronal synapses of mice

lacking dynamin 1, or both dynamins 1 and 3 (Ferguson et al, 2007;

Raimondi et al, 2011) and in embryonic fibroblasts from mice with

conditional double (Ferguson et al, 2009) or triple deletions of

dynamin genes (Park et al, 2013). Mutants with reduced GTPase

activity delay or block endocytosis of transferrin (Marks et al, 2001;

Boll et al, 2004; Song et al, 2004) and prolong the residence time of

clathrin/dynamin at the plasma membrane (Taylor et al, 2011;

Kural et al, 2012). GTPase-defective mutants have dominant nega-

tive phenotypes when they co-assemble with wild-type proteins in

overexpression experiments (Damke et al, 1994).

The mechanism of dynamin-mediated membrane fission has

been studied by reconstitution with purified components. GTP

hydrolysis is consistently required for membrane fission in these

reconstituted systems (Sweitzer & Hinshaw, 1998; Roux et al, 2006;

Bashkirov et al, 2008; Pucadyil & Schmid, 2008; Morlot et al, 2012;

Shnyrova et al, 2013; Mattila et al, 2015). Membrane tension, which

can be provided by adhesion of the membrane tubes to the

substrate, facilitates the reaction (see also below) (Sweitzer &

Hinshaw, 1998; Danino et al, 2004; Roux et al, 2006; Boulant et al,

2011; Morlot et al, 2012). As in membrane fusion, dynamin-

mediated fission proceeds through a hemi-fission state where the

inner leaflet of the tube disappears (see Fig 1B), leaving a connect-

ing neck made of a single lipid monolayer wrapped in a cylindrical

micelle (Bashkirov et al, 2008; Morlot et al, 2012; Shnyrova et al,

2013; Mattila et al, 2015).

Dynamin helices constrict in the presence of GTP

There is broad agreement that a key property of the dynamin helical

oligomer is its ability to constrict in the presence of GTP. In vivo,

inhibition of dynamin GTPase activity with chemicals or mutants
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Figure 2. The three states of the dynamin helix observed by cryo-EM, with dimensions and angles.
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promotes the formation of elongated necks that have a membrane

radius of ~10 nm (Takei et al, 1995; Marks et al, 2001; Liu et al,

2013), consistent with the size of oligomers in the absence of

nucleotide (Sweitzer & Hinshaw, 1998; Chen et al, 2004; Danino

et al, 2004; Roux et al, 2010). Membrane tubes enclosed in helices

of dynamin are more constricted during GTP hydrolysis (see Fig 2)

(Sweitzer & Hinshaw, 1998; Danino et al, 2004; Sundborger et al,

2014) or in the presence of non-hydrolyzable GTP analogs (Zhang &

Hinshaw, 2001; Chen et al, 2004; Mears et al, 2007). The most

constricted conformation is observed with GTP-loaded K44A mutant

dynamin, which has a reduced affinity for GTP partially inhibiting

its GTPase and fission activity. Under these conditions (i.e. super-

saturating concentrations of GTP), K44A dynamin may be trapped

in either a GTP bound state or an undefined GTP hydrolysis transi-

tion state. The membrane tube that is wrapped by this form of

dynamin exhibits an inner luminal radius < 2 nm (see Fig 2)

(Sundborger et al, 2014). This super-constricted state is achieved by

assembling into a two-start helix and is also observed after short-

time reactions containing wild-type dynamin and GTP (Sundborger

et al, 2014). This constriction of the dynamin helix is consistent

with a twisting of the helical collar that can be visualized by the

rotation of beads attached to the dynamin coat (Morlot et al, 2010,

2012) or from the cryo-EM structures with 14 subunits per turn

without nucleotide (Chen et al, 2004), 13 with GMP-PCP (Zhang &

Hinshaw, 2001), and 11 with K44A and GTP (Sundborger et al,

2014). The same twisting activity could result in the elongation of

the pitch observed in cases where the membrane template cannot

be constricted (Stowell et al, 1999; Marks et al, 2001; Lenz et al,

2008; Faelber et al, 2011). This constriction ability seems to be

shared among members of the dynamin family, as it is also

observed for the dynamin-related protein, Dnm1 (Mears et al,

2011).

The properties of dynamin described above are in agreement

with the initial constriction model that dynamin breaks membrane

by constriction during GTP hydrolysis (see Fig 1B). In the first

description of this model, the dynamin helix would constrict until

the membrane neck reaches the hemi-fission state and then is fully

broken. However, two findings from in vitro experiments have been

in apparent disagreement with this simplest view. First, constriction

of dynamin is necessary, but not sufficient for fission. Second, GTP

hydrolysis triggers partial depolymerization of the dynamin coat. In

the following, we detail these findings and explain how they set the

current debate about the dynamin mechanism.

What is being discussed: reconciling GTP-driven
constriction, disassembly, and mechanics of
the membrane

In this part, we will briefly discuss recent data on the role of

mechanics of membrane on the fission reaction, and results on the

role of disassembly in fission. Then, we discuss the two models that

try to conciliate these data.

Contributions of membrane constriction and tension to fission

The first observations of dynamin-mediated fission in vitro showed

that membrane tension was necessary for dynamin to break

membranes. Nonetheless, this observation is consistent with the fact

that the super-constricted state of dynamin does not constrict the

membrane sufficiently to reach hemi-fission, leaving a lumen of

1.9 nm radius (see Fig 2) (Sundborger et al, 2014): In a case where

dynamin would constrict the membrane enough to go beyond the

hemi-fission state and break it completely, membrane tension would

have no impact on the fission rate, as a membrane with low tension

would be broken as efficiently as a membrane with high tension.

However, fission occurs within minutes if membrane tension is low

(Pucadyil & Schmid, 2008; Dar et al, 2015), whereas it takes a few

seconds when membrane tension is high (Roux et al, 2006;

Bashkirov et al, 2008; Morlot et al, 2012), showing indeed that

tension has a direct impact on fission efficiency. Moreover, upon

dynamin-mediated constriction, the hemi-fission state is reached

stochastically (Shnyrova et al, 2013; Mattila et al, 2015) and is

reversible, suggesting that once constricted, thermal fluctuations of

the membrane are needed to reach the hemi-fission state.

Why would membrane tension be required? The solution came

from membrane physics (Kozlovsky & Kozlov, 2003): Calculations

showed that the elastic energy of a highly constricted membrane

neck (down to a lumen of 3 nm, but prior to hemi-fission) was the

same as the elastic energy of the hemi-fission intermediate. In this

case, the calculations predict a low energy barrier, and thus, one

expects the system to pass from the super-constricted to the hemi-

fission state spontaneously and stochastically (i.e., by thermal

fluctuation), and to be reversible, as observed by the Frolov group

(Shnyrova et al, 2013; Mattila et al, 2015). From this conceptual

framework, one thus expects the fission reaction to be stochastic.

Moreover, because the elastic energy of the membrane depends on

tension and rigidity, the rate of fission is also expected to depend on

both, consistent with the early observation that membrane tension

was required for fission (Danino et al, 2004; Roux et al, 2006).

Quantitative measurements of fission rates with membrane tension

and rigidity in vitro further confirmed theoretical predictions

(Morlot et al, 2012). In vivo, the fission rate is similar to the fastest

in vitro values (5–10 s), and the distribution is also stochastic

(Merrifield et al, 2005; Cocucci et al, 2014). Importantly, consistent

with the role of membrane elasticity in dynamin-mediated

membrane fission, increased membrane rigidity reduces the rate of

fission (Morlot et al, 2012), and the presence of polyunsaturated

lipids, which reduces membrane rigidity, facilitates fission (Pinot

et al, 2014). Thus, constriction by dynamin may not be sufficient to

cause membrane fission, but rather dynamin would constrict the

membrane tubule to a size that spontaneously reaches hemi-fission

in a tension and rigidity-dependent manner.

Nucleotide-dependent disassembly of dynamin

As early as dynamin was found to oligomerize, it was observed that

dynamin oligomers in solution would disassemble upon GTP

hydrolysis (Warnock et al, 1996). This GTP-triggered disassembly

was reported by many techniques (Sweitzer & Hinshaw, 1998;

Bashkirov et al, 2008; Pucadyil & Schmid, 2008) but was absent in

other reports (Stowell et al, 1999; Danino et al, 2004; Roux et al,

2006; Morlot et al, 2012), even though limited disassembly could

not be excluded in these experiments. The discrepancy may reflect

the nature of the lipid templates used (their lipid composition and

intrinsic curvature), as well as the concentrations of dynamin and

assays used to measure disassembly (fluorescence, sedimentation,

FRET). Structural studies showing that the GMPPCP-bound form of
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a G domain-GED dimer can be docked into cryo-EM structures,

whereas the GDP�AlF4� -bound state cannot (Chappie, Mears et al,

2011; Sundborger et al, 2014), may indicate that the helical scaffold

is destabilized in the transition state. Moreover, GTP-triggered dis-

assembly is consistent with the necessary recycling of dynamin

observed in vivo (Merrifield et al, 2002; Doyon et al, 2011; Cocucci

et al, 2014; Grassart et al, 2014). It is also consistent with the

finding that fission may occur at the tip of the dynamin coat (Morlot

et al, 2012), which would require that part of the coat be removed

prior to fission. Different results have been obtained in a similar

assay (Dar et al, 2015), but because light microscopy was used in

both studies, the resolution may be insufficient to draw any clear

conclusion.

The current models for dynamin’s fission mechanisms

A two-stage model for dynamin-catalyzed fission (Fig 3A) This
model reconciles the fact that dynamin disassembles upon GTP

hydrolysis with the need for assembled dynamin to constrict the

membrane, by suggesting that these two stages are temporally

distinct. Thus, while dynamin scaffolds are needed to constrict the

membrane, these same scaffolds could stabilize the underlying

tubule and inhibit fission (Bashkirov et al, 2008; Pucadyil & Schmid,

2008; Boucrot et al, 2012). This model suggests that in stage one,

assembled dynamin in a specific nucleotide loaded conformation

adopts a super-constricted state enabling the formation of hemi-

fission intermediates. Based on in vitro data discussed above, this

likely corresponds to a GDP+Pi transition state (mimicked by

GDP•AlF4� binding), when G domains across adjacent rungs form

their highest affinity interactions (Chappie et al, 2011). Subsequent

release of Pi to the GDP-bound state would loosen the scaffold, as

seen by negative-stain EM (Stowell et al, 1999; Danino et al, 2004;

Mattila et al, 2015), allowing for the hemi-fission intermediates to

proceed to complete fission. Importantly, formation of the transition

state requires interactions of G domains between adjacent rungs of a

dynamin helix. Indeed, in vitro (Shnyrova et al, 2013) and in vivo

(Cocucci et al, 2014) data suggest that the minimum fission appara-

tus is slightly larger than one rung in the super-constricted state

(25-30 monomers, 11 dimers per turn).

The two main points of this model under discussion are the

following:

• First, the two-stage model requires that all dimers in a rung are in

the same nucleotide state and thus a high degree of cooperativity

of the dimers for GTPase hydrolysis. This seems inconsistent with

what is known about the GTPase activity of dynamin. The Hill

coefficient of dynamin against GTP is one in the assembled state

(Tuma & Collins, 1994), which means that there is no cooperativ-

ity of dimers in GTP hydrolysis. Also, GTPase domains should

stay in the transition (GTP+Pi) state long enough for hemi-fission

and fission to occur, which takes 5–10 s, whereas the GTPase rate

in the assembled state is a few GTP per second per monomer of

dynamin. Thus, the kinetics of dynamin GTP hydrolysis seems

inconsistent with the two-stage model.

• Second, how induction of hemi-fission is coupled to disassembly

is essential in the two-stage model, as the super-constricted state

of dynamin does not reach hemi-fission. The original proposition

was that disassembly was fast enough to destabilize the

membrane and drive hemi-fission. However, the membrane is

very fluid, with a viscoelastic time less than 10 milliseconds

(Camley & Brown, 2011). It means that any deformation occurring

slower than this time would be followed smoothly by the flow of

membrane. No viscoelastic stress will thus appear, and the behav-

ior of the membrane will be dictated by equilibrium mechanics.

The dynamin disassembly rate is typically in the order of a few

tens to a few hundreds of milliseconds, up to a few seconds to

fully disassemble in vivo (Cocucci et al, 2014). This is much

slower than the membrane viscoelastic time, and thus, complete

disassembly of the dynamin coat circling a non-hemi-fissioned

tubule of membrane is expected to lead to tubule widening rather

than collapse and break.

But other sources of destabilization may be at work (see

Fig 3A): It was shown that the PH domain of dynamin contains a

rather short amphipathic loop that could wedge itself into the

membrane to constrict it further (Ramachandran et al, 2009).

Indeed, biochemistry experiments show that the residues of this

helix insert deeper in the leaflet in a nucleotide-dependent manner

(Mehrotra et al, 2014; Mattila et al, 2015). However, this hypothe-

sis has received some skepticism, as the position of this loop,

away from the PIP2 binding pocket in the PH structure, does not

allow for insertion in the membrane without releasing its link to

PIP2. Moreover, the loop (a few amino acids) is so short that one

can question the fact that it could generate enough curvature to

constrict further the membrane.

A solution might come from the fact the PH domains would tilt

when dynamin is constricted (Shnyrova et al, 2013) (see Fig 3A). In

the super-constricted state, one PH domain per dimer seems tilted in

the cryo-EM data, which could indeed push the helix further in the

leaflet (Sundborger et al, 2014). However, the resolution of the

currently available cryo-EM data is too limited in order to confirm

tilting. Whether this loop insertion is sufficient to create curvature,

and whether it keeps its link to PIP2 is still unclear.

The constrictase/ratchet model (see Fig 3B) The constrictase/

ratchet model is a refined constriction model that proposes that

dynamin acts as a motor. GTP hydrolysis energy would be spent in

mechanical work to slide adjacent turns of the helix. In this model,

GTPase domains, which are linking dynamin turns through direct

interactions, could act as molecular motors, and by cycles of associ-

ation/powerstroke/dissociation powered by several GTP hydrolysis

cycles (see Figs 3B and 4B), would trigger relative sliding of the

helical turn, leading to constriction and twisting of the helix. This

model is analogous to the mechanism of myosin movement on actin

filaments, but with dynamin playing the role of myosin and actin at

the same time.

The biochemistry of the GTPase activity is indeed consistent with

such motor activity: It has a fairly low affinity for nucleotides and a

high GTPase rate (at least when activated through assembly)

(Praefcke & McMahon, 2004). The model is also supported by struc-

tural studies: The global architecture of dynamin is very similar to

myosin or kinesin: It has a stalk, which is connected to the GTPase

domain through a flexible hinge to the BSE. GTP binding was shown

to induce trans-dimerization (between helical turns) of the GTPase

domains via an interface across the nucleotide-binding site (Chappie

et al, 2011). Structural studies indicated that the BSE senses the

nucleotide loading status of the GTPase domain (Chappie et al,
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A THE DISASSEMBLY MODEL

B THE CONSTRICTION/RATCHET MODEL
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Figure 3. The two models of dynamin-mediated membrane fission.
(A) The two-stage model, where constriction is mediated by assembly, and fission by disassembly. (B) The constriction/ratchet model in which constriction is realized by active
sliding of the helical turns and fission by spontaneous fusion of the membrane. The one ring state presented here is proposed to be the most common in vivo (see text).
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2009, 2010, 2011). It adopts an open conformation in the presence of

GTP, whereas a 70° rotation to a closed state was observed in the

presence of GDP�AlF4� (a transition state analog) or in the absence

of nucleotide. This movement could act as a power stroke for

dynamin during constriction (Chappie et al, 2011; Ford et al, 2011).

This model is also consistent with cryo-EM studies showing that

upon conversion from the non-constricted to the constricted state,

there is a reduction in one dimer per helix turn (from 14 to 13).

However, there are several open questions for this model. First,

the structural data obtained by X-ray diffraction on almost full

length (Faelber et al, 2011; Ford et al, 2011; Reubold et al, 2015) or

truncated (G domain-BSE, “G-G”) dynamin constructs (Chappie

et al, 2010) do not perfectly match the cryo-EM data (see Chappie

et al, 2011; Sundborger et al, 2014 for details). In particular, the EM

density maps of the stalks do not perfectly fit the stalk dimer

observed in all published X-ray structures. This may indicate confor-

mational rearrangements of the stalks upon oligomerization or

flexibility of the stalk assembly not observed in low-resolution EM

data. While the GMPPCP-bound dimeric form of the G-G construct

can be docked into the cryo-EM structures, the GDP�AlF4� -bound

state cannot. This suggests that the lipid and GMPPCP-bound

constricted dynamin filament features the open BSE conformation.
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Figure 4. Comparison of the skeletal muscle myosin ATPase (A) with the dynamin GTPase (B) cycles.
Both reaction pathways are populated by chemical intermediates defined in the figure. High energy states are indicated with an asterisk. Arrows indicate the reactions
between each pair of intermediates. The sizes of the blue arrows are proportional to the rates under physiological conditions (taking into account the concentrations for
bimolecular reactions) as defined at the bottom right. The black arrows in (B) indicate unknown rates. The bottom rows in (A) and (B) are reactions of myosin (M) and dynamin
(G) monomers. The top rows are reactions of myosin bound to an actin filament (AM) or dynamin dimers (GG). The vertical arrows indicate the rates of myosin binding actin
filaments and dynamin forming dimers. In (A), the right panel represents a superposition of myosin in the nucleotide-free, pre-power stroke state (pdb 2mys, white) and the
ADP-AlF4� -bound rigor state (pdb 1br1, red). ADP-AlF4� is shown in magenta, and the two myosin light chains bound to the lever arm are shown in blue and dark blue. The
positions of the second light chain and the distal end of the lever in pdb 1br1were modeled based on pdb 2mys. Five actin molecules (yellow) are indicated (from pdb 5jlh). In
(B), the right panel represents a superposition of the G domains in the dynamin GG construct in the GMPPCP-bound open (pdb 3zyk in red) and the GDP-AlF4� -bound closed
form (pdb 2x2e in white). Nucleotides are shown in magenta. Note the 70° rotation of the BSE relative to the G domain.
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Finally, a super-constricted state of dynamin has been described

which has only 11 dimers per helix turn (Sundborger et al, 2014).

However, in this super-constricted state, dynamin forms a two-start

helix, for example, there are two parallel helices wrapping around

the membrane tubule, resulting in a double rise per helix turn. The

relevance of the two-start helix and its relation to dynamin’s

constriction mechanism is currently under debate.

Also in this model, the number of interacting GTPase domains is

critical for force generation. It was shown by two groups (Cocucci

et al, 2014; Grassart et al, 2014) that in vivo, efficient fission could

be mediated by at least 26–28 monomers of dynamin, which corre-

sponds to 13–14 dimers. This number corresponds to a single helical

turn of dynamin in the non-constricted state, or to 1.5 turns in the

super-constricted state. It thus suggests that efficient fission can be

mediated by 1 to 5 G-G interactions. Is this sufficient to generate

enough force to constrict the tube? Can it generate the enormous

torque (approx. 1nN.nm) measured in vitro on long dynamin scaf-

folds (Morlot et al, 2012)?

Another problem is the coupling between formation of G-G links

and constriction: To allow for sliding of the turns, the G-G domains

have to be transiently disrupted. If a given proportion of G-G inter-

acting domains is inactive while others are active (moving), there

would be no sliding. This issue may be solved by carefully consid-

ering the coupling between GTPase and mechanical cycles of

dynamin (see discussion in the next section).

Also, in this model, the constriction force of dynamin probably

opposes two resistances: the membrane elasticity, which would tend

to widen the tube, and most probably the rigidity of the dynamin

coat itself, which counteracts constriction. As shown experimen-

tally, the constriction force is dependent on GTP concentration

(Morlot et al, 2012), which means that in this model the maximal

constriction depends on force and thus on GTP concentration,

which may be inconsistent with the well-defined super-constricted

state. In this case, dynamin would burn GTP to apply a constant

force to hold the tube at its maximal radius of constriction until it

spontaneously breaks.

Finally, in this model, how disassembly occurs is less clear.

Two hypotheses have been suggested: First, once fission has

occurred, dynamin could disassemble because the membrane

template is gone. Second, as discussed above, the stresses appear-

ing in the dynamin coat under constriction could cause it to break

apart. In those two cases, disassembly would be a consequence

of fission and/or constriction, and GTP hydrolysis energy would

primarily be spent in generating constriction force (mechanical

work).

Thus, the field is left with the challenge of discriminating

between two apparently opposing models, one in which most of

the constriction is achieved during assembly, and GTP hydrolysis

destabilizes G-G dimers to loosen the dynamin scaffold, and a

second model where the energy of GTP hydrolysis is spent in

mechanical work of interacting GTPase domains, allowing for one

turn of the helix to walk on the adjacent one. Of course, the two

models may not be mutually exclusive, yet a mechanism consis-

tent with all data has to be found. Clearly, more information is

needed regarding how dynamin’s GTPase cycle is coupled to its

activities (assembly/disassembly, membrane interactions, G

domain dimerization, conformational changes, etc.) that lead to

fission.

What we need to know: what is GTP energy good for and
what is the GTPase cycle of dynamin

The long debate regarding the contributions of dynamin assembly,

constriction, and disassembly to fission appears to be close to reso-

lution. The two models discussed above could be discriminated or

reconciled by obtaining two important pieces of information: How

the GTP hydrolysis energy is spent and whether the super-

constricted state is reached through assembly, or through active

constriction of the polymer. In the disassembly model, most of the

energy of hydrolysis is used to destabilize the polymer, as for tubu-

lin or actin, and the super-constricted state/hemi-fission is reached

through assembly in a more curved helix because dimers are in the

transition state. In the constrictase model, most of the energy is used

to provide mechanical work to slide helical turns and constrict, as

for myosin, and the super-constricted state is reached through multi-

ple rounds of GTP hydrolysis. In the following, we discuss recent

findings trying to address this point.

How constricted is the GTP-loaded state of dynamin?

Jenny Hinshaw and her group have tried to answer this question by

studying the constriction of the dynamin helix depending on its

nucleotide load. The recent finding that dynamin K44A constricted

tubes with GTP, but also dynamin wild-type tubes with GTP, are in

the super-constricted state suggests that at least at some point in the

GTPase cycle assembled dynamin is already in the super-constricted

state (Sundborger et al, 2014). Moreover, in these cryo-EM struc-

tures, dynamin helices are in fact two-start helices (which means

two helices intertwined together), and it thus seems rather impossi-

ble to constrict a one-start helix into a two-start helix. Thus, if

assembled dynamin in the presence of GTP is super-constricted, the

energy of GTP hydrolysis must be used for something other than

constriction, probably disassembly.

However, because this super-constricted state is only seen in

the presence of GTP (no other analogs trigger this state) and

because dynamin K44A still has a minimal GTPase and fission

activity, it cannot be ruled out that this super-constricted state is

not the result of multiple cycles of GTP hydrolysis, inducing

constriction by torsion as proposed by the constriction/ratchet

model. An important note is that a two-start helix would constrict

similarly to a one-start helix. In this case, it would mean that

dynamin assembles as a two-start helix in the presence of GTP,

which could be mediated by the formation of TRANS-tetramer as

a nucleus for two-start helices (see Fig 1A), and then, hydrolysis

would trigger constriction by torsion.

The mechano-chemical cycle of dynamin

In an attempt to determine how the energy from GTP hydrolysis is

used, Tom Pollard compared the mechano-chemical cycles of

myosin and dynamin (see Fig 4). Pre-steady state kinetic experi-

ments established the mechanism of myosin by measuring the rate

and equilibrium constants for each step in the cycle of interaction

with ATP and actin filaments. Much less is known about dynamin,

but the two enzymatic cycles seem to have much in common

(see Fig 4), likely arising from the two enzymes having a common

ancestor and sharing structural features.

Sliding of filaments in a muscle sarcomere depends on coupling

the ATPase cycle to conformational changes. As illustrated in the

2278 The EMBO Journal Vol 35 | No 21 | 2016 ª 2016 The Authors

The EMBO Journal Membrane fission by dynamin Bruno Antonny et al



lower row of reactions in Fig 4A, myosin binds and hydrolyzes ATP

rapidly. Hydrolysis is rapidly reversible, and most of the energy

from ATP binding and hydrolysis is stored in conformational

changes indicated by M* and M**. Myosin releases the c-phosphate
slowly and then releases ADP quickly, to restart the cycle. Two of

the chemical states (nucleotide-free myosin and myosin-ADP) bind

strongly to actin filaments (slow dissociation indicated by small

downward arrows between the two rows), while myosin-ATP and

myosin-ADP-Pi dissociate very fast from actin filaments (large

arrows pointing down). A large free energy change associated with

phosphate dissociation from the actin-myosin-ADP-Pi intermediate

is coupled to a conformational change that produces force on the

actin filament. In muscle, these power strokes are uncoordinated

and the force-producing intermediates have short lifetimes, so most

myosins (95%) are dissociated from actin and do not interfere with

sliding by the active heads. If the myosin heads were coordinated,

the filaments would only slide 5–10 nm per ATPase cycle and the

filaments would slide backwards during the times that no heads

were attached to actin filaments.

Although dynamin has a GTPase cycle parallel to that of the

myosin ATPase cycles (see Fig 4B), it superficially appears to differ

from myosin and other motor proteins, because it does not act upon

a separate filament. Rather, dynamin seems to act upon itself

through interactions between GTPase domains on adjacent turns of

the polymer, with forces transmitted to the dynamin polymer

composed of the stalks and then, ultimately to the underlying

membrane.

Figure 4B shows what is known about the dynamin

mechanochemical cycle. The mechanism involves the GTPase cycles

of monomers (bottom row) and dimers (top row) and the formation

and dissociation of dimers of each chemical intermediate (vertical

arrows, comparable to myosin binding to actin). The analysis is

limited by lack of information about some of the parameters, but

enough is known to propose general features. Six of the 16 rate

constants have been measured [numerical values indicated (Binns

et al, 2000)], and the values of six more can be estimated from equi-

librium constants. The sizes of the blue arrows indicate estimated

rates under physiological conditions. Black arrows indicate parame-

ters that have never been measured.

Dynamin monomers bind GTP rapidly, but dissociate GTP faster

than motor proteins dissociate ATP (Song & Schmid, 2003).

Dynamin monomers (G) hydrolyze GTP at ~0.01/s (Binns et al,

2000; Song & Schmid, 2003), much slower than motor proteins.

Nothing is known about dissociation of the c-phosphate, which is

unfortunate, since this reaction is crucial in motor ATPases and

other GTPases. However, GDP dissociates rapidly, so it can be

assumed that Pi does as well. Given physiological concentrations of

GTP and GDP, most of monomeric dynamin would have bound GTP

in the GT or G*T states.

Dynamin dimers must use a GTPase cycle (top row of Fig 4B)

parallel to dynamin monomers. Fortunately, we know the most

crucial rate constant, the hydrolysis of GTP, which is 100 times

faster for dimers than for monomers. The other rate constants have

not been measured.

Only the intermediate shown to form intermolecular dimers in

solution had bound GDP•AlF4� (a stable mimic of GDP•Pi), but the

affinity of this GGD•P dimer is low with a Kd of 8.4 lM (Chappie

et al, 2011). Depending on the association rate constant, this affinity

corresponds to a dissociation rate of 10–100/s. GTPase domains in

other intermediate states have such lower affinities for each other

(Kd > 30 lM) (J. Chappie and F. Dyda, personal communication)

that no dimers are detected in solution (Chappie et al, 2010). Thus,

such dimers will dissociate rapidly. Although the high local concen-

tration of assembled dynamin favors association of the GTPase

domains, only the GGD•P dimers are expected to be stable enough

to support motion.

Given these reaction rates, the pathway through the dynamin

GTPase cycle probably goes from nucleotide-free monomeric

GTPase domain (G) to its form associated with GTP (GT), which

then hydrolyzes GTP to be in the transition state associated with

GDP+Pi (GD•P). In this state, the GTPase domain can dimerize

(GGD•P) and perform the powerstroke. The dissociation of dimers

to monomers could be either in the GGD•P state or after release of

the phosphate (GGD) (see Fig 4). Note an important difference from

myosin; the GTPase with bound GDP and Pi has the highest affinity

for itself, whereas the myosin-ATP and -ADP-Pi intermediates have

the lowest affinity for actin filaments.

Structural studies indicate that the energy from GTP binding

and hydrolysis is most likely used to produce motion during the

transition from GGT (GTPase dimer with bound GTP) to GGD•P

(GTPase dimer with bound GDP and Pi) when a large conforma-

tional change swings the BSE almost 70° (Chappie et al, 2011).

This event will occur when two GT intermediates are transiently

bound together in a GGT dimer. GTP hydrolysis appears to drive

both the lever arm motion and stabilize the dimer. This is compa-

rable to the motion of the myosin lever arm composed of the light

chain domain, which occurs when the weakly bound

A-MDP intermediate dissociates Pi. An important parallel with

muscle myosin is that the force-producing intermediates, the

strongly bound GG dimers between adjacent turns of the dynamin

helix, are transient while the other chemical intermediates are

dissociated into monomers that do not interfere with the sliding

motion. Verifying this hypothesis should be relatively easy by

measuring the missing parameters with pre-steady state kinetics.

Steady state kinetics analyzed with Michaelis–Menten assumptions

are unlikely to reveal mechanistic details.

The stochasticity of the fission reaction (Merrifield et al, 2005;

Bashkirov et al, 2008; Taylor et al, 2011; Morlot et al, 2012;

Cocucci et al, 2014; Grassart et al, 2014) and the measured Hill

coefficient toward GTP concentration [value of one (Tuma &

Collins, 1994)] agrees with the fact that the GTP hydrolysis of

GTPase domains in the polymer are not coordinated. The available

kinetic data (Fig 4B) show that dynamin is not processive, so

multiple uncoordinated dynamins must work together to produce

force with only a minority producing force at any point in time.

This explains why GTP hydrolysis of ~5 dimers is required for

membrane fission (Liu et al, 2013).

More information is also required about the assembly/disassem-

bly cycle, in particular the role of GTP in assembly of a one-start

versus two-start helix. One possibility is that the interactions

between GTPase domains in the GTP bound form allows for the

formation of G-G-mediated tetramers (TRANS-tetramer see Fig 1A),

corresponding to the nucleus of a two-start helix. However, in vivo,

the majority of units added to the dynamin polymer at the clathrin-

coated pit are dimers (Cocucci et al, 2014), even if some tetramers

can be seen.
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Future directions of the dynamin research

The role of PRD-binding dynamin partners, in particular the BAR

domain proteins

One of the unknowns about dynamin is the precise role in its

function played by the proteins that bind to its PRD. Many such

binding partners have been identified, most of which bind the

PRD via SH3 domains (Ferguson et al, 2009). These proteins

define the context in which dynamin must act by functioning as

adaptors to facilitate its membrane recruitment or by coordinating

its action with that of other proteins. For example, some SH3

domain-containing proteins that bind dynamin also bind actin

regulatory proteins, signaling proteins, or phosphoinositide metab-

olizing enzymes. The property of some such membrane adaptor

proteins (most prominently endophilin) to recruit both dynamin

and synaptojanin (Ringstad et al, 1997, 1999; Milosevic et al,

2011) is of special interest as it helps coordinate the fission reac-

tion of endocytosis with PI(4,5)P2 dephosphorylation. Such reac-

tion could help dissociation of dynamin and other endocytic

factors from the membrane after fission.

Several SH3 domain-containing dynamin interactors also

contain a BAR family domain, a membrane binding, and, in some

cases, a membrane remodeling module (Takei et al, 1999; Farsad

et al, 2001; Peter et al, 2004; Itoh et al, 2005; Frost et al, 2008;

Mim et al, 2012). A function of proteins with these modules is to

help recruit dynamin and facilitate its polymerization. However, a

key open question is whether these proteins also participate

directly in the fission reaction either via an effect on the curva-

ture of bilayer or via their interactions with dynamin. Data on

this topic are conflicting, as based on in vitro studies involving

purified proteins and liposomes, both inhibitory and facilitating

effects on GTPase activity and on dynamin-mediated fission have

been observed (Farsad et al, 2001; Peter et al, 2004; Yoshida

et al, 2004; Meinecke et al, 2013; Neumann & Schmid, 2013). The

positive effects may be explained by the property of these

proteins to facilitate dynamin assembly because of their dimeric

nature (Peter et al, 2004) and ability to polymerize. The negative

effect is likely explained by two mechanism: First, the crescent

shape of the BAR domain may block further constriction by

dynamin by forming a rigid scaffold of fixed curvature on the

membrane (Boucrot et al, 2012). Second, BAR domain rungs

could intercalate between opposing GTPase modules in the

dynamin spiral, as shown by unpublished cryo-EM images by

Adam Frost, which explain the reported increase of the dynamin

pitch in the presence of BAR proteins (Takei et al, 1999; Farsad

et al, 2001; Itoh et al, 2005; Sundborger et al, 2011). This inser-

tion explains reduced GTPase activity as it disrupts the G

domain–G domain interaction necessary for GTP hydrolysis. At

high BAR/dynamin ratio, all tested BAR domain proteins have a

blocking action on dynamin-mediated fission (A. Roux, P. De

Camilli and A. Frost, unpublished results).

A more precise elucidation of how these BAR domain proteins

regulate dynamin fission activity is critically needed. Most of the

available data were derived from different assays, with variable stoi-

chiometric ratios between dynamin and BAR domain proteins and

most important under cell-free conditions with purified proteins.

These conditions may not faithfully replicate events occurring in

living cells.

A functional link between dynamin and actin

An important open question is the functional relation of dynamin to

actin. In addition to being detected at endocytic clathrin-coated pits,

dynamin is also detected at a variety of sites, primarily involving

the Arp2/3 complex–actin network, such as macropinocytosis, cell

ruffles, podosomes, invadopodia, and actin comet tails (Ochoa et al,

2000; McNiven et al, 2004; Bruzzaniti et al, 2005). Arp2/3 complex

and one of its nucleation-promoting factors, N-WASP, are also

frequently observed at endocytic clathrin-coated pits, where they

colocalize with dynamin spatially and temporally (Merrifield et al,

2002, 2004, 2005; Taylor et al, 2011) and dynamin clearly controls

actin polymerization at sites of endocytosis, at least in some cell

types (Taylor et al, 2012; Grassart et al, 2014). Colocalization of

dynamin with these proteins is mediated at least in part by the

dynamin-binding SH3 domain-containing proteins, which also bind

N-WASP (Cip4/Fbp17/Toca1 family members) (Frost et al, 2009),

the WAVE complex (Ochoa et al, 2000), and cortactin (McNiven

et al, 2000; Cao et al, 2005).

There is evidence suggesting that the colocalization of actin and

dynamin at endocytic sites reflects the need for actin-based force

(via actin polymerization or myosin motors) to facilitate dynamin-

dependent fission (Itoh et al, 2005; Boulant et al, 2011; Morlot

et al, 2012; Messa et al, 2014). This is consistent with the fact that

reduced membrane tension delays fission in vivo (Boulant et al,

2011; Morlot et al, 2012). This effect could be achieved locally by

direct interaction of the dynamin coat with the actomyosin

network through PRD-binding proteins, as the actin cortex is the

main membrane tension regulator in the cell. However, the local-

ization of dynamin at other actin rich sites remains without a clear

explanation and calls for further studies. For example, recent find-

ings from the Chen laboratory strongly support a role of dynamin

in organizing the asymmetrical, actin-based protrusions that

myoblasts use to fuse with myotubes (E. Chen, unpublished).

Similar observations have been made for osteoclasts fusion (Shin

et al, 2014).

The dynamin family—similarities and differences

Other members of the dynamin family, such as OPA1 and mitofusin,

function in membrane fusion and tubulation rather than membrane

fission. The challenge remains to understand how insights into

dynamin’s membrane scission mechanism can be applied to other

members of the family to explain fusion and membrane tubulation,

in addition to scission.

Extensive crystallographic analyses of GTPase-BSE constructs in

a variety of nucleotide states from Drp1 Arabidopsis thaliana

AtDRP1A (Chen et al, 2012), human MxA (Rennie et al, 2014),

and Dnm1 (Kishida & Sugio, 2013; Wenger et al, 2013) support

that all of these members share a mechanism of GTP hydrolysis

with dynamin—namely, dimerization of the GTPase domains and,

likewise, a nucleotide-dependent conformational change of the

BSE. However, further studies will confirm how general this

mechanism is.

Comparative analyses of stalk interaction interfaces of close

dynamin relatives suggest similar assembly principles but different

helical geometries (e.g. helices of increased diameter in the case of

Dnm1) that may be adapted for particular cellular functions, such as

tubulation of the endosome or mitochondrial constriction. Other

family members, such as the mitochondrial fusion dynamins, have
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predicted all-helical stalk regions though in general molecular

insight into assembly mechanisms and architecture of such assem-

bled structures remains sparse. There is limited understanding of

how stimulated nucleotide hydrolysis is converted into a membrane

remodeling event for most of the members. It may be expected that

appropriate alterations in rates of assembly, hydrolysis, and disas-

sembly can convert a scission dynamin into a longer lived tubulat-

ing or fusion dynamin.

Dynamin has unique features compared to all other members of

its family: most prominently, its PH domain and PRD. Absence of

these would require an alternative mechanism for recruitment,

association/interaction with target membranes, and, potentially,

participation in scission (see above). Drp1 (higher eukaryotes)/

Dnm1 (fungi) have, in place of a PH domain, an “Insert B” region

of low sequence complexity. In these cases, membrane recruitment

is therefore outsourced to accessory factors. Drp1 can be indepen-

dently recruited by MFF and, separately, by the closely related

proteins MiD49, MiD51 although the functional consequences of

recruitment by either pathway may differ (Gandre-Babbe & van

der Bliek, 2008; Koirala et al, 2013; Palmer et al, 2013; Liu &

Chan, 2015; Loson et al, 2015). In yeast, Dnm1 is recruited by

Fis1 and the adaptors Mdv1 and Caf4 (Lackner et al, 2009; Guo

et al, 2012). BDLP has a “paddle” where dynamin has a PH

domain. The paddle has a number of hydrophobic residues that

are required for membrane interaction (Low et al, 2009). An alter-

native solution is exhibited by the mitofusins (mammals), Fzo1

(fungi), atlastins, and some forms of OPA1 and Mgm1 (mammals/

fungi), which are membrane-anchored via transmembrane

segments.

Conclusions

This review emphasizes large areas of consensus, but also the

remaining issues to solve for a complete understanding of dynamin

mechanism. We also propose approaches that need to be taken to

resolve these issues. Yet, the synthesis of 30 years of work on

dynamin allows us to be optimistic, and already, we can state that

many aspects of dynamin-mediated membrane fission have been

understood. As the prototypic member of a large family of related

GTPases that catalyzes both fission and fusion, we hope that the

current and future knowledge acquired on the mechanism of

dynamin-catalyzed fission will aid our understanding of multiple

cellular fission and fusion reactions.
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