75 research outputs found

    Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1

    Get PDF
    Peer reviewe

    MicroRNA Related Polymorphisms and Breast Cancer Risk

    Get PDF
    Peer reviewe

    Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis.

    Get PDF
    BACKGROUND: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear. METHODS: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of European descent in the Breast Cancer Association Consortium. RESULTS: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR) = 1.71 per standard deviation (SD) increase, 95% confidence interval (CI) = 1.26-2.31, p  =  5.09  ×  10-4], 2-h glucose (OR = 1.80 per SD increase, 95% CI = 1.3 0-2.49, p  =  4.02  ×  10-4), BMI (OR = 0.70 per 5-unit increase, 95% CI = 0.65-0.76, p  =  5.05  ×  10-19) and WHRadj BMI (OR = 0.85, 95% CI = 0.79-0.91, p  =  9.22  ×  10-6). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2-h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer. CONCLUSIONS: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer

    Mycobacterium tuberculosis Dethiobiotin Synthetase Facilitates Nucleoside Triphosphate Promiscuity through Alternate Binding Modes

    No full text
    The penultimate step in the biosynthesis of biotin is the closure of the ureido heterocycle in a reaction requiring a nucleoside triphosphate (NTP). In Mycobacterium tuberculosis this reaction is catalyzed by dethiobiotin synthetase (MtDTBS). MtDTBS is unusual as it can employ multiple (NTPs), with a >100-fold preference for cytidine triphosphate (CTP). Here the molecular basis of NTP binding was investigated using a surface plasmon resonance-based ligand binding assay and X-ray crystallography. The biophysical and structural data revealed two discrete mechanisms by which MtDTBS binds NTPs: (i) A high affinity binding mode employed by CTP (KD 160 nM) that is characterized by a slow dissociation rate between enzyme and ligand (kd 5.3 × 10–2 s–1) and that is defined by an extended network of specific ligand–protein interactions involving both the cytidine and triphosphate moieties and (ii) a low affinity mode employed by the remaining NTPs (KD > 16.5 μM), that is characterized by weak interactions between protein and ligand. Previously intractable structures of MtDTBS in complex with ATP, GTP, UTP, and ITP were obtained to define the molecular basis of the low affinity ligand binding. Anchoring of the triphosphate moiety into the phosphate binding loop of MtDTBS allows the promiscuous utilization of multiple NTPs. Both high and low binding mechanisms showed conserved hydrogen bonding interactions involving the β-phosphate of NTPs and a high-affinity anion binding site within the phosphate binding loop. This study provides insights into enzymes that can likewise utilize multiple NTPs.Andrew P. Thompson, Wanisa Salaemae, Jordan L. Pederick, Andrew D. Abell, Grant W. Booker, John B. Bruning, Kate L. Wegener and Steven W. Polya
    corecore