108 research outputs found

    Could thioredoxin h be involved in early response to gravitropic stimulation of poplar stems?

    Get PDF
    The perception of gravity is essential for plant development. Trees constantly develop specialized woody tissues, termed « reaction wood » to correct inclined branch and stem growth in order to adopt an optimal position. Despite the economical impact of reaction wood occurrence and itsimportance from a developmental point of view, the perception and response to the gravitational stimulus have not been extensively studied in woody species in which primary and secondary growth occur. Using complementary approaches (proteomics, qRT-PCR, immunolocalization), we have compared straight polar stems to stems that were inclined at 35° from the vertical axis for periods of time varying from 10 min to 6 hours depending on the experiments. The proteomics approach revealed that thirty six percent of the identified proteins that were differentially expressed after gravistimulation were established as potential Thioredoxin targets. qRT-PCR indicated an early induction of Thioredoxin h expression following gravistimulation. In situ immunolocalization indicated that Thioredoxin h protein co-localized with the amyloplasts located in the endodermalcells which may be specialized in gravity perception. These investigations suggest the involvement of Thioredoxin h in the first events of signal transduction in inclined poplar stems, leading to reaction wood formation

    High Magnetic Field ESR in the Haldane Spin Chains NENP and NINO

    Full text link
    We present electron spin resonance experiments in the one-dimensional antiferromagnetic S=1 spin chains NENP and NINO in pulsed magnetic fields up to 50T. The measured field dependence of the quantum energy gap for B||b is analyzed using the exact diagonalization method and the density matrix renormalization group method (DMRG). A staggered anisotropy term (-1)^i d(S_i^x S_i^z + S_i^z S_i^x) was considered for the first time in addition to a staggered field term (-1)^i S_i^x B_st. We show that the spin dynamics in high magnetic fields strongly depends on the orthorhombic anisotropy E.Comment: 4 pages, RevTeX, 4 figure

    Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input

    Get PDF
    In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents

    Impurity Energy Level Within The Haldane Gap

    Full text link
    An impurity bond JJ{'} in a periodic 1D antiferromagnetic, spin 1 chain with exchange JJ is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J<JJ{'}<J the level changes gradually from the edge of the Haldane gap to the ground state energy as the deviation dev=(JJ)/Jdev=(J-J{'})/J changes from 0 to 1. It seems that there is no threshold. Yet, there is a threshold when J>JJ{'}>J. The impurity level appears only when the deviation dev=(JJ)/Jdev=(J{'}-J)/J{'} is greater than BcB_{c}, which is near 0.3 in our calculation.Comment: Latex file,9 pages uuencoded compressed postscript including 4 figure

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure

    Conditional generation of N-photon entangled states of light

    Get PDF
    We propose a scheme for conditional generation of two-mode N-photon path-entangled states of traveling light field. These states may find applications in quantum optical lithography and they may be used to improve the sensitivity of interferometric measurements. Our method requires only single-photon sources, linear optics (beam splitters and phase shifters), and photodetectors with single photon sensitivity.Comment: 4 pages, 2 figures, RevTeX

    Conditional generation of arbitrary multimode entangled states of light with linear optics

    Full text link
    We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available.Comment: 7 pages, 5 figure

    On the influence of the cosmological constant on gravitational lensing in small systems

    Full text link
    The cosmological constant Lambda affects gravitational lensing phenomena. The contribution of Lambda to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to Lambda the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation, references added, results unchanged, in press on PR
    corecore