36 research outputs found

    Place of death in patients with lung cancer: a retrospective cohort study from 2004-2013

    Get PDF
    Introduction: Many patients with cancer die in an acute hospital bed, which has been frequently identified as the least preferred location, with psychological and financial implications. This study looks at place and cause of death in patients with lung cancer and identifies which factors are associated with dying in an acute hospital bed versus at home. Methods and Findings: We used the National Lung Cancer Audit linked to Hospital Episode Statistics and Office for National Statistics data to determine cause and place of death in those with lung cancer; both overall and by cancer Network. We used multivariate logistic regression to compare features of those who died in an acute hospital versus those who died at home. Results: Of 143627 patients identified 40% (57678) died in an acute hospital, 29% (41957) died at home and 17% (24108) died in a hospice. Individual factors associated with death in an acute hospital bed compared to home were male sex, increasing age, poor performance status, social deprivation and diagnosis via an emergency route. There was marked variation between cancer Networks in place of death. The proportion of patients dying in an acute hospital ranged from 28% to 48%, with variation most notable in provision of hospice care (9% versus 33%). Cause of death in the majority was lung cancer (86%), with other malignancies, chronic obstructive pulmonary disease (COPD) and ischaemic heart disease (IHD) comprising 9% collectively. Conclusions: A substantial proportion of patients with lung cancer die in acute hospital beds and this is more likely with increasing age, male sex, social deprivation and in those with poor performance status. There is marked variation between Networks, suggesting a need to improve end-of-life planning in those at greatest risk, and to review the allocation of resources to provide more hospice beds, enhanced community support and ensure equal access

    Histamine modulates spinal motoneurons and locomotor circuits

    Get PDF
    Spinal motoneurons and locomotor networks are regulated by monoamines, among which, the contribution of histamine has yet to be fully addressed. The present study investigates histaminergic regulation of spinal activity, combining intra- and extracellular electrophysiological recordings from neonatal rat spinal cord in vitro preparations. Histamine dose-dependently and reversibly generated motoneuron depolarization and action potential firing. Histamine (20μM) halved the area of dorsal root reflexes and always depolarized motoneurons. The majority of cells showed a transitory repolarization, while 37% showed a sustained depolarization maintained with intense firing. Extracellularly, histamine depolarized ventral roots (VRs), regardless of blockage of ionotropic glutamate receptors. Initial, transient glutamate-mediated bursting was synchronous among VRs, with some bouts of locomotor activity in a subgroup of preparations. After washout, the amplitude of spontaneous tonic discharges increased. No desensitization or tachyphylaxis appeared after long perfusion or serial applications of histamine. On the other hand, histamine induced single motoneuron and VR depolarization, even in the presence of tetrodotoxin (TTX). During chemically induced fictive locomotion (FL), histamine depolarized VRs. Histamine dose-dependently increased rhythm periodicity and reduced cycle amplitude until near suppression. This study demonstrates that histamine induces direct motoneuron membrane depolarization and modulation of locomotor output, indicating new potential targets for locomotor neurorehabilitation

    Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis

    Get PDF
    BACKGROUND: Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. METHODS AND RESULTS: Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; β=−0.26) and contralesional (P=0.006; β=−0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; β=−0.21) and extent of sensorimotor damage (P=0.003; β=−0.15). CONCLUSIONS: The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.Artemis Zavaliangos-Petropulu, PhD, Bethany Lo, BSc, Miranda R. Donnelly, MS, Nicolas Schweighofer, PhD, Keith Lohse, PhD, PStat, Neda Jahanshad, PhD, Giuseppe Barisano, MD, Nerisa Banaj, PhD, Michael R. Borich, PhD, Lara A. Boyd, PhD, Cathrin M. Buetefisch, MD, PhD, Winston D. Byblow, PhD, Jessica M. Cassidy, PhD, Charalambos C. Charalambous, PhD, Adriana B. Conforto, PhD, Julie A. DiCarlo, MSc, Adrienne N. Dula, PhD, Natalia Egorova-Brumley, PhD, Mark R. Etherton, MD, PhD, Wuwei Feng, MD, Kelene A. Fercho, PhD, Fatemeh Geranmayeh, PhD, Colleen A. Hanlon, PhD, Kathryn S. Hayward, PhD, Brenton Hordacre, PhD, Steven A. Kautz, PhD, Mohamed Salah Khlif, PhD, Hosung Kim, PhD, Amy Kuceyeski, PhD, David J. Lin, MD, Jingchun Liu, MD, Martin Lotze, MD, Bradley J. MacIntosh, PhD, John L. Margetis, OTD, Feroze B. Mohamed, PhD, Fabrizio Piras, PhD, Ander Ramos-Murguialday, PhD, Kate P. Revill, PhD, Pamela S. Roberts, PhD, Andrew D. Robertson, PhD, Heidi M. Schambra, MD, Na Jin Seo, PhD, Mark S. Shiroishi, MD, Cathy M. Stinear, PhD, Surjo R. Soekadar, MD, Gianfranco Spalletta, MD, PhD, Myriam Taga, PhD, Wai Kwong Tang, MD, Gregory T. Thielman, EdD, Daniela Vecchio, PhD, Nick S. Ward, MD, Lars T. Westlye, PhD, Emilio Werden, PhD, Carolee Winstein, PhD, PT, George F. Wittenberg, MD, PhD, Steven L. Wolf, PhD, Kristin A. Wong, MD, Chunshui Yu, MD, Amy Brodtmann, MD, PhD, Steven C. Cramer, MD, Paul M. Thompson, PhD, Sook-Lei Liew, PhD, OTR,

    The response of newly born mice to odors of murine colostrum and milk: Unconditionally attractive, conditionally discriminated

    No full text
    It is a general rule that milk conveys chemosensory cues that are attractive to mammalian neonates. This study investigated whether compositional fluctuations in milk along lactation induce variations in newborn mouse pups' (Mus musculus, strain BALB/c) attraction to milk odor. Pups differing in suckling experience were exposed to the odor of milk sampled from females varying in lactational stage. Immediately after birth, suckling-inexperienced (P0) and suckling-experienced (P0(suck)) pups were assayed in a series of paired-choice tests contrasting murine milk [of lactation days 0, 3, 15 (abridged L0, L3, L15, respectively)] and a blank (water) to evaluate olfactory detection and attraction of milk odor. Preference tests further paired these milk two-by-two to assess their relative attraction. Results showed first that P0 and P0(suck) pups detect and positively orient to any milk odor. When L0 is presented against L15 milk, P0 pups orient for a similar duration towards these odor stimuli, whereas P0(suck) pups spend more time toward the odor of L0 than of L15 milk. Finally, P0(suck) pups orient similarly to odors of L0 milk collected before/after the first suckling episode (L0 and L0(suck), respectively), but the odor of L0 milk was more attractive than that of L3 milk. Thus, mouse pups' positive orientation toward the odors of murine colostrum (assumed to correspond to L0/L0(suck) milk) and later-lactation milk appears unconditional of previous suckling experience, whereas their ability to discriminate or display preference between milk differing in lactation stage appears conditional on postnatal exposure effects
    corecore