80 research outputs found

    Plankton Taxonomic and Size Diversity of Mediterranean Brackish Ponds in Spring: Influence of Abiotic and Biotic Factors

    Get PDF
    In this study, performed in Mediterranean brackish ponds during spring season, we assessed the effects of biotic interactions and abiotic factors on the size and taxonomic structure of the phytoplankton and zooplankton. We used a taxonomic and a size diversity index as a descriptor of the community structure. We predicted that the size diversity of each trophic level would be mainly related to biotic interactions, such as size-based fish predation (in the case of zooplankton) and food resource availability (in the case of phytoplankton), whereas taxonomic diversity would be more affected by abiotic variables (e.g., conductivity, pond morphology). Our results showed a negative relationship between phytoplankton size diversity and food resource availability leading to low size diversities under food scarcity due to dominance of small species. Conductivity also negatively affected the phytoplankton size diversity, although slightly. Regarding zooplankton size diversity, none of predictors tested seemed to influence this index. Similar fish size diversities among ponds may prevent a significant effect of fish predation on size diversity of zooplankton. As expected, taxonomic diversity of phytoplankton and zooplankton was related to abiotic variables (specifically pond morphometry) rather than biotic interactions, which are usually body size dependent, especially in these species-poor brackish environments

    Implications of climate change for ecological reference conditions, thresholds and classification systems for European lakes

    Get PDF
    This report focuses on potential effects of climate change on ecological reference conditions and on ecological responses to nutrient pressures in lakes, especially threshold-type and non-linear responses. Reference conditions and thresholds responses are both fundamental for na-tional ecological classification systems according to the European Water Framework Direc-tive (WFD), for defining reference values and management targets (Good/Moderate class boundary) respectively. Effects of climate change on these components therefore have impor-tant implications for assessment of ecological status and management of lakes. We have addressed the effects of climate change on lakes by an extensive literature review, as well as by analysing palaeolimnological datasets, large-scale European datasets and long-term time series for four individual lakes in Norway, Estonia and Germany (case studies). The cli-matic changes considered include increased temperature, increased precipitation (and conse-quently increased content of organic matter) and reduced precipitation (and consequently re-duced water levels and increased salinity). The literature review describes effects of climate change on reference conditions for each biological quality element (BQE; phytoplankton, macrophytes, macroinvertebrates and fish); of these phytoplankton and fish tend to be most sensitive to climate change. Results from new palaeolimnological analyses suggest that nutrients are the dominant driver of diatom compositional change, and there is insufficient evidence to suggest how reference conditions should be modified in light of climate change. Nonetheless further work is required to explore the relationship between diatoms and climate change in more detail. Analysis of chlorophyll a (chl-a) in European reference lakes suggest that under future climatic condi-tions, increased temperature in combination with increased TP (due to increased winter pre-cipitation) will lead to increased chl-a concentrations, although the effects will vary with the lake type (notably the humic level). Large-scale analysis of cyanobacteria in North-European lakes, considering both lake typology and climatic variables, suggest that the risk of exceed-ing regulatory thresholds for cyanobacteria will increase with future higher temperature, but also that this tendency to some degree might be compensated by increased precipitation. The four case studies provide more detailed examples of interactions between climatic factors and nutrient pressures on plankton communities, and demonstrate some of the complexity in-volved in ecological responses to climate change in lakes. Finally, the report provides a set of recommendations for river basin management, considering impacts of climate change on ref-erence conditions and ecological thresholds, and the implications for WFD-based classifica-tion systems

    Density-dependent effects as key drivers of intraspecific size structure of six abundant fish species in lakes across Europe

    Get PDF
    Fish size structure has traditionally been used for elucidating trophic interactions and patterns of energy transfer through trophic levels(Trebilco et al.2013). We analysed the siz estructure of six common freshwater fish species in several hundred European lakes. We found little effect on the strength of the environmental gradients of size structure. The intraspecific density-dependent effect was the strongest and most consistent predictor

    Final report on impact of catchment scale processes and climate change on cause-effect and recovery-chains

    Get PDF
    Catchment wide integrated basin management requires knowledge on cause-effect and recovery chains within water bodies as well as on the interactions between water bodies and categories. In the WISER WP6.4 recovery processes in rivers, lakes and estuarine and coastal waters were evaluated. The major objectives were: - to analyse and compare (cause-effect and) recovery chains within water categories based on processes and structural and functional features; - to detect commonalities among different chains in different water categories ( to compare recovery chains between water categories); - to link recovery chains to over-arching biological processes and global change; - to develop a method to combine recovery effects in a summarising ‘catchment’ metric. The main stressors studied to reach these objectives were acidification, eutrophication and hydromorphological changes

    Effects of Temperature, Salinity and Fish in Structuring the Macroinvertebrate Community in Shallow Lakes: Implications for Effects of Climate Change

    Get PDF
    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes

    Pond research and management in Europe: "Small is Beautiful"

    Get PDF
    The phrase "Small is Beautiful" was first used by the talented scholar Leopold Kohr (1909 131994), but it becames more popular thanks to the essays of one of his students, the British economist E. F. Schumacher, and it was coined as a response to the socially established idea that "Big is Powerful". It could be argued that this desire for "bigness" explains why current legal frameworks and the conservation planning and management related to standing waters often overlook ponds, despite their well-known value in terms of biodiversity and socio-economic benefits (Oertli et al., 2004; Cereghino et al., 2008). Of course, this is only one of several possible explanations, but it is important to understand that such long-established ideas can have a lasting effect upon the efficiency of our conservation actions. Beyond this social perspective, the history of science can also provide some explanation as to why ponds have been undervalued for so long

    Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems

    Get PDF
    The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation prioritiesinfo:eu-repo/semantics/publishedVersio

    Competitive outcome of Daphnia-Simocephalus experimental microcosms: salinity versus priority effects

    Get PDF
    Competition is a major driving force in freshwaters, especially given the cyclic nature and dynamics of pelagic food webs. Competition is especially important in the initial species assortment during colonization and re-colonization events, which depends strongly on the environmental context. Subtle changes, such as saline intrusion, may disrupt competitive relationships and, thus, influence community composition. Bearing this in mind, our objective was to assess whether low salinity levels (using NaCl as a proxy) alter the competitive outcome (measured as the rate of population biomass increase) of Daphnia-Simocephalus experimental microcosms, taking into account interactions with priority effects (sequential species arrival order). With this approach, we aimed to experimentally demonstrate a putative mechanism of differential species sorting in brackish environments or in freshwaters facing secondary salinization. Experiments considered three salinity levels, regarding NaCl added (0.00, 0.75 and 1.50 g L(-1)), crossed with three competition scenarios (no priority, priority of Daphnia over Simocephalus, and vice-versa). At lower NaCl concentrations (0.00 and 0.75 g L(-1)), Daphnia was a significantly superior competitor, irrespective of the species inoculation order, suggesting negligible priority effects. However, the strong decrease in Daphnia population growth at 1.50 g L(-1) alleviated the competitive pressure on Simocephalus, causing an inversion of the competitive outcome in favour of Simocephalus. The intensity of this inversion depended on the competition scenario. This salinity-mediated disruption of the competitive outcome demonstrates that subtle environmental changes produce indirect effects in key ecological mechanisms, thus altering community composition, which may lead to serious implications in terms of ecosystem functioning (e.g. lake regime shifts due to reduced grazing) and biodiversity
    • 

    corecore