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Abstract: In this study, performed in Mediterranean brackish ponds during spring season,
we assessed the effects of biotic interactions and abiotic factors on the size and taxonomic structure of
the phytoplankton and zooplankton. We used a taxonomic and a size diversity index as a descriptor
of the community structure. We predicted that the size diversity of each trophic level would be
mainly related to biotic interactions, such as size-based fish predation (in the case of zooplankton)
and food resource availability (in the case of phytoplankton), whereas taxonomic diversity would
be more affected by abiotic variables (e.g., conductivity, pond morphology). Our results showed a
negative relationship between phytoplankton size diversity and food resource availability leading
to low size diversities under food scarcity due to dominance of small species. Conductivity also
negatively affected the phytoplankton size diversity, although slightly. Regarding zooplankton size
diversity, none of predictors tested seemed to influence this index. Similar fish size diversities among
ponds may prevent a significant effect of fish predation on size diversity of zooplankton. As expected,
taxonomic diversity of phytoplankton and zooplankton was related to abiotic variables (specifically
pond morphometry) rather than biotic interactions, which are usually body size dependent, especially
in these species-poor brackish environments.

Keywords: trophic interactions; phytoplankton; zooplankton; fish; pond morphometry; food
resource availability

1. Introduction

Mediterranean ponds are ecologically very important ecosystems that support relevant
hydrological, chemical and biological processes and are biodiversity hotspots in terms of both
species composition and biological traits [1]. They are also very vulnerable habitats, because they are
threatened by several anthropogenic pressures [2,3]. Nevertheless, these habitats have received less
scientific attention than other water bodies such as lakes or rivers [4,5].

Most ecological studies of Mediterranean ponds have been focused on their taxonomic
diversity [2], the dynamics of a certain species and communities [6–9] and its relationship with
nutrients dynamics and hydrological patterns [10–13], as well as with anthropogenic pressures [14].
However, there are not many studies considering size-based interactions among adjacent trophic
levels (predators and preys) of the food web [15–17] despite such interactions play a key role in the
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trophic structure and functioning of aquatic ecosystems [15–18]. It is worth to mention that size-based
interactions are particularly relevant in the species-poor communities like those of Mediterranean
brackish ponds where trophic interactions are mainly body-size dependent [19,20]. A way to analyze
the size structure of a community is through the size diversity index, which is analogous to Shannon
diversity index but adapted for continuous variables, such as body size [21,22]. In Mediterranean
brackish ponds, it has been shown that size diversity provides complementary information about the
community structure to classical taxonomical approaches. While taxonomic diversity of zooplankton
and macroinvertebrates communities was more sensitive to abiotic factors such as nutrient availability,
size diversity was mainly related to biotic interactions (e.g., predation or inter-and/or intraspecific
competition) [19,23]. However, abiotic factors can also affect the size structure of a community.
For example, in other European brackish ecosystems, an increase in conductivity has been related to
a decrease in zooplankton mean size and size diversity due to the replacement of large cladoceran
species by copepods, small cladoceran species and rotifers, which are overall more salt-tolerant [24–26].

Size structure within a trophic group of the planktonic food web can be determined by the size
structure of the adjacent trophic levels since both predation and food selection are size-dependent [16].
However, each trophic group may be affected in different ways by top-down (e.g., size-based predation)
or bottom-up (e.g., size diversity of resources) controls. Several studies in aquatic ecosystems have
shown that fish predation is the most important driver of zooplankton size structure, as an increase in
fish density is related to a decrease in density, mean body size and size diversity of zooplankton [27–29].
However, the effects of size-structured predation (i.e., predation by individuals of different sizes) on
the individual size structure of prey in natural food webs are less well understood, although this
information brings insight into the strength of the interactions between adjacent trophic levels and
into the biomass transfer through the food web [15,16,30,31]. A recent study [30], found a negative
relationship between predator (mesozooplankton) and prey (nanomicroplankton) size diversities
which was explained due to the enhanced strength of top-down control at increasing predator size
diversity. Nevertheless, the opposite situation has also been found—positive relationship between
the size diversity of predators (fish) and prey (zooplankton)—suggesting that a higher diversity
of sizes in consumers may promote diversification of resources by size [16]. On the other hand,
size diversity of a trophic group may also be determined by bottom-up control since low resource
availability often results in higher size diversity of consumers, as has been found in zooplankton and
fish communities [21,28]. Thus, when resources are scarce, the competitive pressure for resources
between small and large individuals can be reduced by size-based selection of food, where large and
small predators tent to prefer large and small prey respectively, allowing the coexistence of a wide
range of organism sizes [21,28,32,33]. Concerning phytoplankton, recent studies have shown that
its size diversity is mainly determined by changes in resource availability, rather than by predation,
as due to the prevailing influence of abiotic factors in their nutrient uptake [16,28,31,34].

Whereas size diversity is usually more sensitive to biotic interactions, taxonomic diversity
had been found to be more related to abiotic factors, such as nutrient concentration [19,23,35],
conductivity [23,35] and water body size [36]. In shallow ecosystems, zooplankton and benthic
macroinvertebrates taxonomic diversity was found to be negatively related to increasing concentrations
of phosphorus [19,37] and total organic carbon [23] respectively, whereas nitrogen and phosphorous
were found to decrease phytoplankton taxonomic diversity [38]. Regarding conductivity effects,
in Mediterranean brackish communities a decrease in taxonomic diversity of zooplankton [23,35],
macroinvertebrates [8], and phytoplankton [39] was observed at highest conductivities. In these
communities, conductivity plays an important role for shaping species composition and food web
interactions [24,25,27,40,41]. Increased conductivity is usually related to reduced richness due to low
osmoregulatory ability of several species [9,24,26,42,43]. Significant positive regression between
area of the water body and the number of species had been found for ponds gastropods [44],
for macroinvertebrates in streams and ponds [36,45], and for phytoplankton and zooplankton in
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lakes [37,46–48]. In a study on Danish shallow lakes, lake depth was also positively related to
phytoplankton species richness [37].

Although both taxonomic and size-based approaches can be used to complement each other,
studies dealing with their combination when determining plankton community-structuring factors
are still scarce [19]. The combination of both approaches becomes especially relevant in species-poor
communities, like those in Mediterranean brackish ecosystems, where harsh environmental conditions
make size-based interactions more relevant [23]. In this study, performed in Mediterranean brackish
ponds, we aimed to determine the effects of biotic interactions (i.e., predation, food resource availability)
and abiotic factors (environmental variables) on the phyto- and zooplankton taxonomic and size
diversity indexes, and explore if they are affected by the same factors. To analyze the effects of
biotic interactions we searched for relationships among diversity metrics of adjacent trophic levels
(phytoplankton, zooplankton, and fish) as previous studies did [16,30]. The study was carried out
during the spring season since the plankton peak is broader [49], and fish activity is higher [8,50].
We expected that taxonomic diversity for both phyto- and zooplankton would be more related to
abiotic factors (e.g., conductivity, depth, area, etc.) [19,23] whereas size diversity would be mainly
related to biotic interactions (top-down and bottom-up processes). Regarding zooplankton size
diversity, we expected that it would mainly be driven by top-down effects (i.e., fish predation) due to
size-based predation pressure by fish. At increasing predator size diversity, top-down control would
be enhanced [30,51] and, therefore, we predicted a negative relationship between the zooplankton and
fish size diversity. In the case of phytoplankton, we expected that the size diversity would be more
affected by bottom-up effects (i.e., changes in resource availability) rather than by top-down effects
(i.e., zooplankton predation), as it has been observed in previous studies [16,31,52], and therefore we
predicted a negative relationship between the size diversity of phytoplankton and its resource, due to
competitive interactions for resources in less productive systems [16].

2. Materials and Methods

2.1. Study Area

The study was performed in brackish ponds located in two protected areas in the Empordà coastal
wetlands (Figure 1) that are situated between 42◦01′42′′ N–3◦11′18′′ E and 42◦15′58′′ N–3◦08′17” E of
Catalonia region (NE Spain) and are characterized by Mediterranean climate with hot, dry summers
and mild, wet winters. The hydrological pattern of these coastal wetlands, free from tidal influence,
is mainly determined by sudden and irregular flooding events (rainfalls or marine intrusion during
sea storms, the latter not more often than twice a year) followed by prolonged periods of confinement
without water inputs (winter anticyclone and summer droughts) [53]. Therefore, hydrological
connection among ponds and/or to the sea or rivers takes place only during the strong flooding
events. During the rest of the hydroperiod, ponds remain confined because of the presence of dunes,
sand bars, and/or artificial levees [12,53]. In contrast to many temperate lakes, in these confined
Mediterranean ponds nitrogen rather than phosphorus is usually the limiting nutrient for primary
production (e.g., [19,54,55]) due to strong denitrification processes, low water turnover and the high
internal load of phosphorous [56,57].

2.2. Sampling and Analysis

A total of 13 permanent ponds (Table S1) were sampled once during the spring season (May to
early June 2016). We chose to sample the ponds in spring since the plankton peak is broader [49], and
fish activity is higher [8,50]. Mean water column depth (cm) was calculated from repeated measures
of water column depth obtained in situ using a two-meter rule. Total area (m2) was estimated in
each pond by using ‘Google Maps Area Calculator Tool’ [58]. Physicochemical variables such as
temperature (◦C), pH, conductivity (mS·cm−1), total dissolved solids (mg·L−1) and dissolved oxygen
(mg·L−1) were measured in situ using a multiparameter probe (Hanna Instruments, Woonsocket, RI,
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USA). Water transparency was estimated as Secchi depth (cm) out of maximum water column depth
(cm) as it has been previously used in shallow waterbodies [16]. Water samples were analyzed for
total phosphorus (mg·L−1), soluble reactive phosphates (mg·L−1), total nitrogen (mg·L−1) and nitrates
(mg·L−1), according to Koroleff 1973 [59], adapted by Seal Analytical to an integrated system of CFA
digester. Chlorophyll-a was measured using spectrophotometry after 90% acetone extraction following
Parsons and Strickland, 1963 [60].
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Figure 1. Location of the study: Empordà coastal wetlands (Catalonia, Spain) (A), with a zoom on the
studied ponds in red (B,C). Ten of the studied ponds were in the ‘Aiguamolls de l’Empordà’ Natural
Park (B), and three were located southern in ‘El Montgrí, Illes Medes i el Baix Ter’ Natural Park (C).
This map was produced with the online software ArcGIS (version 10.5.1, 2017, ESRI Environmental
System Research Institute, Redlands, CA, USA) (https://www.arcgis.com).

In each pond, water samples for planktonic organisms were taken through the water column
by means of a 6 L container. Several subsamples were obtained in each pond from different sites
and subsequently mixed to overcome the expected patchy distribution of plankton. To obtain a
phytoplankton sample, 250 mL of unfiltered water were stored in 4% acid Lugol’s solution, and
for the zooplankton sample 5 L were filtered through a 50 µm mesh-size net and preserved in 4%
acid Lugol’s solution. Zooplankton individuals (including rotifers, copepods and cladocerans) were
counted, identified to species level (whenever possible) and measured (total length in µm) using
a stereoscope and an inverted microscope (Utermöhl method). For the individual counting and
identification, we analyzed the whole sample, whereas for the measuring, we measured the first
100 individuals (when possible) assuming all individuals were equitably distributed in the observed
sample. Phytoplankton was counted and identified to specie level under inverted microscope using
Utermöhl chambers following the protocol for phytoplankton identification described in the EU project
‘WISER’ (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) [61]
When identification at species level was not possible, the different species of the same genus were
numbered differently in order to respect the diversification. For both zooplankton and phytoplankton,
at least 100 individuals of the most abundant taxa were counted. For phytoplankton, biovolume was
estimated through the calculation of similar geometric models [62].

https://www.arcgis.com
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Fish Sampling

Different methods of fish sampling were selected to cover efficiently the different microhabitats
of ponds. Shallow littoral areas were sampled using plastic minnow traps (PMT) and fyke nets (FN).
Multi-mesh gillnets (GN) were set on central and deepest areas of ponds that were at least 1.5 m
deep since it is the height of the gillnet. PMT were made with 2 L soda plastic bottles as described in
Fouilland & Fossati, 1996 [63] and Clavero et al., 2006 [64]. The upper piece of each bottle was cut and
inverted, acting as a funnel (main characteristics: 21.5 mm of funnel diameter, 72 cm2 of interception
area, 22.5 cm of length and 9.6 cm of height). FN consisted of a semicircular entrance ring followed
by three smaller circular rings surrounded by a net (3.5 mm mesh) and had two consecutive funnels
(120 mm of funnel diameter, 1050 cm2 of interception area, 98 cm of length, 30 cm of height and 95 cm
of wing length). GN followed the European standard [65] composed of 12 mesh-size panels of length
2.5 m each ranging between 5 mm to 55 mm (length 30 m, height 1.5 m, knot to knot dimensions
following a geometric series: 5, 6.25, 8, 10, 12.5, 15.5, 19.5, 24, 29, 35, 43, and 55 mm). PMT and FN were
set during 24 h. GN were set for approximately 12 h overnight to include both evening and morning
phases of high fish activity [65]. The total number of fish traps set in each of the studied ponds varied
according to their area and depth (Table S1). Captured fish were identified, measured for total length
(mm) and released. In each studied pond, captures per effort unit (CPUE) were calculated for each
fish species and each sampling method by dividing the captures for the number of traps, fyke nets or
gillnets respectively.

2.3. Calculation of Diversity Metrics

For each phytoplankton, zooplankton and fish samples we obtained two diversity measures: the
Shannondiversity index (taxonomic) and the size diversity index (non-taxonomic). The taxonomic
index (H′) was calculated using the numerical abundance of each identified taxon as following [66]:

H′ = −
S

∑
i=1

pi lnpi (1)

where pi is the proportion of individuals belonging to the ith taxon, and S is the total number of
identified taxon. Shannon diversity index (H′) was calculated with the ‘vegan’ R-package [67].

The size diversity index (µ) was calculated using individual size measurements as proposed by
Quintana et al., 2008 [22]. This index is computed based on the Shannon diversity expression adapted
for a continuous variable, such as body size. This measure takes the form of an integral involving the
probability density function of the size of the individuals described by the equation

u = −
∞∫

0

ρx(x) log2 ρx(x)dx (2)

where ρx(x) is the probability density function of size x. The nonparametric Kernel estimation was used
as a probability density function, which is applicable to any type of size distribution. Before computing
size diversity, data were automatically standardized by division of each size value by the geometric
mean of the size distribution. The size diversity index is the continuous analogue of the taxonomic
Shannon diversity index, and it produces values in a similar range to those of the Shannon index.
For each trophic level, we randomly measured at least 100 individuals in each sample thatrepresents
a size diversity error estimation lower than 10%. Size diversity index was computed following an R
code provided by Quintana et al., 2008 [22].

2.4. Data Analysis

We used general linear models (GLMs) to test the effects of biotic interactions (e.g., top-down and
bottom-up effects) and abiotic factors on the phyto- and zooplankton taxonomic and size diversity
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indexes. Thus, at each trophic level (phytoplankton and zooplankton) two GLM models were carried
out considering taxonomic and size diversity indexes as response variables respectively. Since the
small sample size (N = 13) limited the number of independent variables to be included in each GLM
model, we used the smallest number of predictors which allowed us to test for our hypothesis: two
variables reflecting biotic interactions (top-down and bottom-up effects, respectively) and three abiotic
environmental variables.

As predictor variables reflecting biotic interactions, we used the two diversity indexes of the
adjacent trophic levels, taxonomic or size-based depending on the response variable (i.e., size-based
metrics when size diversity was the response variable and vice versa). Therefore, predictor variables
used to test top-down effects (i.e., predation from upper trophic level) in phytoplankton GLMs were
the zooplankton diversity indexes, and in zooplankton GLMs were the fish diversity indexes. For what
concern the fish community, we only considered those planktivorous fish species since we are testing
predation effects on zooplankton. We only used captures from PMT since they are more effective than
FN in capturing small juveniles [64]. To test for bottom-up effects (i.e., food resource availability),
predictor variables used in zooplankton GLMs were the phytoplankton diversity metrics whereas
in phytoplankton GLMs we used the “phytoplankton biomass: total nitrogen” ratio. Similar ratios
(e.g., Chlorophyll-a: TP, Chlorophyll-a: TN) have been previously used in studies dealing with
phytoplankton yield, as a measure of the phytoplankton resources limitation (ratio values are high
under resource limitation) [16,26,68].

As predictor abiotic variables for both phyto- and zooplankton GLMs, we considered conductivity,
pond area, and depth because of the absence of correlation among them and with the diversity
metrics (Pearson’s r < |0.31| and p-value > 0.30 for all cases. See Supplementary Table S2 for
correlations details). These three abiotic variables have already been shown to play an important
role in structuring Mediterranean pond communities [15,16,31,32]. We dismissed using other abiotic
variables that, although not correlated, did not show enough variation among ponds (e.g., temperature,
pH). The rest of the measured environmental variables were significantly correlated among them
(Pearson’s r > |0.56| and p-value < 0.05 for all cases).

We looked for the most parsimonious of the full models by performing an automatic backward
selection of one predictor variable at a time by minimizing the Akaike information criteria (AIC).
The most parsimonious model was the combination of variables having the strongest impact
on outcomes. To compare the relative strength of the significant predictors, we calculated their
standardized (beta) coefficients, and adjusted R2 was used as a measure of the variability explained
by the model. Variables were log-transformed when necessary to improve linearity and reduce
heteroscedasticity, and residual plots were inspected to detect violations of regression assumptions.
The variance inflation factor (VIF) was used to check collinearity, and Cook’s distances were analyzed
to check for outliers and influential cases. We are aware that a low number of observations (N = 13)
prevent making reliable predictions when performing multiple regression models taking the risk to
incur into Type I error. Nevertheless, to make an estimation of the statistical power of the GLM models
obtained, we computed the statistical power analysis of each model using the G*Power software [69]

All data have been analyzed using R version 3.4.2 (R core Team, 2017, Boston, MA, USA). All plots
have been created with ‘ggplot2’ R-package [70].

3. Results

Physico-chemical variables measured in the studied ponds are shown in Table 1. Since we sampled
once during the spring season, water temperatures (◦C) were relatively similar between ponds (with a
mean value of 25.56 ◦C and a standard deviation of 2.97), as well as pH. Studied ponds are brackish,
with conductivity values ranging from 10.7 mS·cm−1 to 69.10 mS·cm−1, and shallow, with mean depths
ranging from 16 cm up to 150 cm. In addition, they differed quite a lot also in their areas, with values
ranging from 147.90 m2 to 68,150 m2. The measured dissolved oxygen content in water showed a
situation very far from anoxia, with values from 41.10 mg·L−1 to 262.50 mg·L−1. Chlorophyll-a values
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ranged from a minimum value of 0.31 µg·L−1 to a maximum value of 43.41 µg·L−1, and the mean
water transparency, measured as Secchi depth: maximum depth, was 0.89 cm. With regard to nutrient
concentrations, inorganic forms of nitrogen and phosphorus (nitrate and soluble reactive phosphate) were
always lower than total nitrogen and phosphorus, which included organic and inorganic forms (Table 1).
Nitrates were especially lower in the studied ponds with an average concentration of 0.21 µmol·L−1.
Values of the ratio “phytoplankton biomass: total nitrogen”, as a measure of resource limitation for the
phytoplankton, ranged from 0.09 (high resource availability) to 1.58 (low resource availability).

Table 1. Mean, minimum, maximum, and standard deviations (SD) values of the physico-chemical and
morphometric variables measured in the study ponds (N = 13). The “phytoplankton biomass: total
nitrogen” ratio used in phytoplankton GLMs models to test the bottom-up effects (i.e., food resource
availability, see text Section 2.4) is also included.

Mean Minimum Maximum SD

Mean water column depth (cm) 55.08 16.00 150.00 37.99
Pond area (m2) 9457.90 147.90 68,150.00 18,162.80
Water transparency 0.89 0.64 1.00 0.12
Temperature (◦C) 25.56 21.14 32.20 2.97
pH 8.47 7.39 9.97 0.72
Conductivity (mS·cm−1) 42.61 10.07 69.10 18.74
Total dissolved solids (g·L−1) 0.03 0.01 0.05 0.00
Dissolved oxygen (%) 115.04 41.10 262.50 56.66
Chlorophyll-a (µg·L−1) 11.92 0.31 43.41 14.54
Total nitrogen (µmol·L−1) 97.00 58.55 234.40 47.46
Total phosphorus (µmol·L−1) 3.19 0.44 7.57 2.15
Nitrate (µmol·L−1) 0.21 0.07 0.66 0.16
Soluble reactive phosphate (µmol·L−1) 1.27 0.09 6.94 2.01
Phytoplankton biomass: total nitrogen 0.35 0.09 1.58 0.42

With regards the phytoplankton community in the studied ponds, a total of 39 species were
identified belonging to seven classes (Figure 2A). Prasinophyceans (mostly marine species) dominated
the community (>60%) under high conductivity (ponds PI: ‘Bassa del Pi’, LLU: ‘Bassa de la llúdriga’ and
AN: ‘Bassa de l’anguila’), whereas bacillariophyceans (diatoms) were more abundant in the 3 ponds that
showed lower conductivities, with the specie Navicula sp. (Bory de Saint-Vincent, 1822), except for FAN
(Fangassos) pond where diatoms were probably composed by marine species. In the rest of the ponds,
phytoplankton was dominated by cryptophyceans and dinophyceans (dinoflagellates). Phytoplankton
individual length ranged from 2.55 µm (cyanophiceans) to 112.81 µm (prasinophyceans).

Regarding the zooplankton community, a total of 17 species were found in the studied ponds being
rotifers the dominant group in 8 of the ponds (>50% of total zooplankton abundance, Figure 2B). In the
other five ponds, the zooplankton was dominated (>70% to 100%) by the group of copepods, where
planktonic larval stages (copepodites + nauplii) were the dominant followed by adult individuals of
calanoids and harpacticoids. Cladocerans were the less abundant and frequent (present only in two
ponds) and did not dominate the community in any pond. Zooplankton individual length ranged
from 0.39 mm (rotifers) to a maximum of 5.54 mm (cladocerans).

For what concern the fish community, we found 8 species including both continental and
marine species, being the latter the less abundant. The endemic Aphanius iberus (Valenciennes, 1846),
an omnivorous an euryhaline species, was well distributed along the conductivity gradient and was the
most abundant species reaching a maximum of 957.6 CPUE in all the ponds together. It was present
in 11 out of 13 ponds and dominated the community (>70%) in 8 ponds (Figure 2C). The second most
abundant fish was the freshwater, invasive planktivorous Gambusia holbrooki (Girard, 1859) that reached
a maximum total abundance of 705.9 CPUE in all the ponds together. It was only present in the less
salty ponds (Figure 2C) except in the pond BF (Bassa Fartet) where the species never arrived. In order of
abundance, the following species were the planktivorous Atherina boyeri (Risso, 1810), with a maximum
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CPUE of 102.9, the benthivorous Pomatoschistus sp. (Gill, 1863) with a maximum CPUE of 62.2 and Mugil
cephalus (Linnaeus, 1758) with a CPUE of 41.8, all them present in five ponds at most. The less abundant
(≤4.8 CPUE) and frequent (<2 ponds) species were, in order, the marine fish Solea solea (Queusel, 1806),
Anguila anguila (Linnaeus, 1758) and the invasive Lepomis gibbosus (Linnaeus, 1758). Fish individual
length ranged from 6 mm (A. iberus juveniles) to a maximum of 60 cm (A. anguila).
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Figure 2. Relative abundance (ind·L−1) of the main groups of (A) phytoplankton and (B) zooplankton,
and (C) fish species (CPUE) in the 13 studied ponds ordered by increasing conductivity (from left to
right). Note that for the zooplankton bar graph, larval stages of copepods (copepodites + nauplii)
include all groups, calanoids and harpacticoids. Abbreviations of ponds’ names are explained in
Table S1.

Diversity metrics calculated for the three trophic levels (phytoplankton, zooplankton, and fish)
are shown in Table 2. Size diversity values ranged from a minimum of 0.31 up to a maximum of
2.95, both found in phytoplankton assemblages, while taxonomic diversity ranged from 0.00 (in those
zooplankton and fish assemblages composed by one species), to a maximum of 2.14 (in phytoplankton
assemblages).

Table 2. Diversity metrics of phytoplankton, zooplankton and fish assemblages in the studied ponds
(N = 13). The descriptive statistics are the mean, minimum, maximum and standard deviation (SD). Fish
diversity metrics were computed using only those planktivorous species (A. iberus, G. holbrooki, A. boyeri).

Mean Minimum Maximum SD

Phytoplankton

Size diversity 1.79 0.31 2.95 0.61
Taxonomic diversity 0.94 0.02 2.14 0.53

Zooplankton

Size diversity 1.95 0.70 2.84 0.67
Taxonomic diversity 0.38 0.00 1.13 0.34

Fish

Size diversity 1.42 0.72 2.08 0.37
Taxonomic diversity 0.08 0.00 0.40 0.14

Variables significantly affecting size and taxonomic diversity in each of the GLM models performed
are shown in Table 3, whereas full models are shown in Supplementary Table S3. According to GLMs
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results (Table 3, Figures 3 and 4), in the phytoplankton assemblages, size diversity was slightly positively
related with conductivity (marginally significant p-value = 0.06), and negatively related with the ratio
“phytoplankton biomass: total nitrogen” (p-value = 0.02) (Figure 3). Beta coefficients showed values of
0.48 for conductivity and−0.62 for the ratio meaning that the latter had a stronger effect on the dependent
variable. This model explained 47% of the variation in the size diversity (p-value = 0.04, statistical power
= 0.55). Taxonomic diversity in the phytoplankton was positively related with area and negatively related
with depth of the pond (Figure 4). In this second model, beta coefficients showed values of 0.46 for pond
area and−0.73 for the pond depth showing a stronger effect of pond depth. This model explained 76% of
the variance in the phytoplankton taxonomic diversity (p-value < 0.01, statistical power = 0.99). Regarding
zooplankton assemblages, none of predictor variables tested were selected in the GLMs to be significant
for size diversity. Instead, taxonomic diversity was positively related with the area of the pond (Figure 4).
A Beta coefficient of 0.65 showed a high strength of the effect of pond area on the dependent variable.
The model explained 42% of variance (p-value = 0.02, statistical power = 0.80).
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Figure 3. Partial plots obtained from GLM models showing the relationships between size diversity of
phytoplankton assemblage and those predictor variables selected (see Table 3).

Table 3. Results of the GLMs (N = 13) showing the predictor variables that affect size diversity and
taxonomic diversity of phytoplankton and zooplankton assemblages. Only the most parsimonious
significant models are presented. For each one, intercept (estimate and standard error, S.E.),
Beta coefficients (standardized), t-value, significance (p-value) and degrees of freedom (df) are shown.
For each model, the global p-value, R2 and the statistical power are shown. Phytoplankton biomass: TN
is the ratio of “phytoplankton biomass: total nitrogen” used as a measure of food resource availability
for phytoplankton.

Response
Variable Predictor Estimate S.E. Beta

Coefficients t-Value p-Value df Global
p-Value R2 Statistical

Power

Phytoplankton

Size diversity Conductivity 0.02 0.01 0.48 2.04 0.06
11 0.04 0.47 0.55Log Phytoplankton

biomass:TN −3.71 1.42 −0.62 −2.62 0.02

Species
diversity

Log Pond Area 0.32 0.11 0.46 2.96 0.01
11 <0.01 0.76 0.99log Mean Depth −1.44 0.31 −0.73 −4.73 <0.01

Zooplankton

Species
diversity Log Pond area 0.29 0.10 0.65 2.86 0.02 11 0.02 0.42 0.8
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4. Discussion

In the studied ponds, the physico-chemical characteristics of the water, as well as the composition
of planktonic communities, were the expected for Mediterranean coastal brackish ponds during spring
season. Thus, they show a variable conductivity (ranges within expected for brackish waters) and low
concentrations of inorganic nutrients (nitrates and phosphates) due to the absence of water inputs
during the sampling period. Inorganic nutrients are quickly up taken by phytoplankton as they enter
into the pond, and then transformed into organic form [55,57]. Therefore, high concentrations of total
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nutrients (both nitrogen and phosphorus) are typical in these confined ecosystems, which even tend to
increase in spring and summer due to evaporation phenomena [53]. Regarding biological communities,
the phytoplankton species found were also characteristic of the brackish coastal ponds during spring
season, with a high presence of marine species (dinophyceans) that can stand high salinities and
entered the ponds during sporadic flooding events (e.g., sea storms) [39,53]. Zooplankton composition
was also similar to the composition found in spring in previous studies in brackish ecosystems [12,57]
with the dominance of salt tolerance rotifer species and planktonic larval stages of copepods. Regarding
fish community, marine species were found in low abundance in ponds with higher salinity, due
to sporadic flooding events, whereas small planktivorous fish (A. iberus and G. holbrooki) were the
dominant and more abundant species in all the studied ponds. Ranges of taxonomic and size diversity
values found in each trophic level were also characteristic of the spring season in Mediterranean
brackish ponds [71,72].

Regarding the effects of abiotic and biotic factors on plankton diversity indexes, our results
agreed with our hypothesis regarding taxonomic diversity since it was significantly affected by an
abiotic factor (pond morphometry) for both phytoplankton and zooplankton assemblages. Thus,
in the studied Mediterranean brackish ponds, our results showed that when increasing pond
area both the phytoplankton and zooplankton taxonomic diversity also increased. Phytoplankton
taxonomic diversity increased also when decreasing pond depth. These results are supported by the
biogeographical principle that a larger area supports more species, [73], and that area is one of the best
single predictors of species number [74]. Actually, one of the most commonly observed patterns in
aquatic ecology, and for a wide variate of taxa (planktonic and benthonic organisms), is the positive
relationship between the diversity metrics and the area of the water body [44,48,73,75,76]. According
to those studies, in a bigger pond there is likely more habitat heterogeneity, favoring the coexistence of
more species. In the present study, a bigger area was translated to a more diverse littoral and aquatic
habitats (e.g., presence of Phragmites australis, Arthrocnemum, Juncus maritimus, Ruppia sp., algal mats,
unvegetated open waters, etc.) In a study on biodiversity in Danish lakes [37], lake depth was also
related to phyto- and zooplankton richness.

Even though conductivity varied among the studied ponds during the spring sampling
(from 10.07 to 69.10 mS·cm−1), probably due to different evaporation rates (different surface, wind
influence) [53,57] or water inputs during previous flooding events (fresh- or seawater inputs) [53,77],
we did not find a significant effect of conductivity on phyto- and zooplankton taxonomic diversity.
This may suggest that conductivity values did not differ enough among ponds to have an appreciable
effect on the taxonomic diversity of plankton. Conductivity has been widely recorded as a main
environmental factor shaping taxonomic structure and biodiversity in Mediterranean planktonic
communities [6,20] having negative consequences in species composition, such as a reduction in
species richness and diversity, and also affecting the food web interactions [26,27].

Concerning the effects of the analyzed environmental factors on the plankton size diversity in
the spring season, results obtained in the present study partially agreed with our hypothesis that
size diversity (in contrast to taxonomic diversity) was more related to biotic interactions (predation
and/or food resource availability). However, this was only true for phytoplankton assemblages since
for zooplankton none of the abiotic nor biotic predictor variables tested significantly affected the size
diversity. As we predicted, our results showed that phytoplankton size diversity was mainly affected
by bottom-up effects (i.e., food resource availability) rather than top-down effects (i.e., predation), as it
has been found in previous studies in lakes [16,28,31] and marine ecosystems [78–80]. In the present
study, resource limitation (i.e., high values of the “phytoplankton biomass: total nitrogen” ratio)
would lead to a dominance of small phytoplankton cells and, therefore, to a decrease in size diversity
under low nutrient availability. Small phytoplankton is more efficient than the large one due to their
low resource requirements and high cell’s surface-to-volume ratio [81,82]. Our results agree with
previous studies in lake and marine ecosystems where changes in phytoplankton resource supplies,
like total phosphorous [16] and a resource supply index [34], were the main drivers of phytoplankton
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size structure since smaller sizes are favored at low nutrient availability due to the higher surface:
volume ratio or lower resource requirement. Nevertheless, there are some studies which found both
positive [83] and negative [30] relationships between zooplankton and phytoplankton size diversities
thus indicating a top-down control on the phytoplankton size structure. In the case of positive
relationships, prey size diversity was found to increase predator size diversity, promoting diversity of
consumers [83] whereas in the case of negative relationships, an increase in predator size diversity
was found to enhance the strength of top-down control, reducing prey size diversity [30]. It is worth
mentioning that, in the present study, a slightly positive effect of conductivity on phytoplankton
size diversity was also observed. The additional presence of phytoplankton marine species in
high-conductivity ponds (i.e., prasinophyceans and some bacillariophyceans) likely increased the
phytoplankton size diversity. The entrance of marine phytoplankton in salt marshes was also observed
in López-Flores et al., 2006 [84] after a sea storm, leading to a change in the specie composition.
In the present study, the pond with the less size diversity was dominated by small-sized species (e.g.,
cryptophyceans) suggesting that the prevalence of small-sized individuals leads to a low size diversity.

Against our predictions, zooplankton size diversity in these Mediterranean ponds during the
spring season was not affected by fish size diversity (i.e., top-down effects) although previous studies
have found significant relationships between predators and prey size diversity (e.g., zooplankton
and planktivorous fish [16], planktivorous and piscivorous fish [85]). It is important to highlight that
in these previous studies a wide geographic range was considered (including different ecoregions
and altitudes), and predators size diversity ranges were wider than the ones found in the present
study. For example, in Brucet et al., 2017 [16] fish size diversity ranged from a minimum of −0.81 to a
maximum of 2.42, whereas in our study, where geographical variation was negligible, size diversity
of planktivorous fish ranged from 0.72 to 2.08. This was probably due to the similar sizes of the
planktivorous fish present in the studied ponds (A. iberus, G. holbrooki, and A. boyeri, size ranges
between 6 mm and 5.8 cm) that lead to a small range of size diversity values. This, together with the
fact of not including in our analysis the presence of other predators, that although they were observed
in situ (e.g., jellyfish Odessia maeotica, the amphipod Gammarus aequicauda) they could not be sampled
properly, may prevent finding significant top-down effects on zooplankton size structure. We cannot
ignore the fact that in the Mediterranean brackish ponds both the jellyfish and the amphipod have
been found to act as planktonic top predators [86,87] causing changes in lower trophic levels through
cascading effects [88,89].

In conclusion, our results suggested that in Mediterranean brackish ponds during spring season
both the taxonomic diversity of phyto- and zooplankton were mainly influenced by abiotic factors
(pond morphometry variables), whereas size diversity was mainly affected by biotic interactions
but just in the case of phytoplankton. Nutrient limitation (i.e., bottom-up effects) rather than
zooplankton predation (i.e., top-down effects) affected the phytoplankton size diversity leading
to small phytoplankton size diversity when resource availability was low. Regarding zooplankton size
diversity we did not find the expected top-down effects (i.e., fish predation) probably due to the similar
sizes of planktivorous fish lead to similar fish size diversities among ponds. We are aware that our
findings may have been limited by the low number of ponds studied, but also by the fact of considering
the classical three-level food chain (phytoplankton, zooplankton and fish) neglecting the effects of
omnivory and intraguild predation [28,90,91], and the presence of the microbial loop [92,93]. It is worth
mentioning that our results are limited to spring plankton communities in Mediterranean brackish
ponds and we cannot rule out the effect of seasonality in our results since, in the Mediterranean region,
it leads to greater environmental variability which is also reflected in planktonic community dynamics
and composition [26,53,57].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/1/106/s1,
Table S1: Main geographic and morphometric characteristics of the studied ponds, along with the number of
traps used for each pond. Table S2: Results of Pearson correlation among predictor variables used in GLMs
with the p-values. Table S3: Results of the GLMs (N = 13) showing predictor variables that affect size diversity
and taxonomic diversity of phytoplankton and zooplankton assemblages. Both full models and best models are

http://www.mdpi.com/2073-4441/11/1/106/s1
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presented. For each one, intercept (estimate and standard error, S.E.), Beta coefficients (standardized), t-value,
significance (p-value) and R2 of the model are shown. Phyt. biom.: TN is the ratio of “phytoplankton biomass:
total Nitrogen” used as food resource availability in phytoplankton models.
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