56 research outputs found

    Forming consensus to advance urobiome research

    Get PDF
    Urobiome research has the potential to advance the understanding of a wide range of diseases, including lower urinary tract symptoms and kidney disease. Many scientific areas have benefited from early research method consensus to facilitate the greater, common good. This consensus document, developed by a group of expert investigators currently engaged in urobiome research (UROBIOME 2020 conference participants), aims to promote standardization and advances in this field by the adoption of common core research practices. We propose a standardized nomenclature as well as considerations for specimen collection, preservation, storage, and processing. Best practices for urobiome study design include our proposal for standard metadata elements as part of core metadata collection. Although it is impractical to follow fixed analytical procedures when analyzing urobiome data, we propose guidelines to document and report data originating from urobiome studies. We offer this first consensus document with every expectation of subsequent revision as our field progresses

    School Toileting Environment, Bullying, and Lower Urinary Tract Symptoms in a Population of Adolescent and Young Adult Girls:Preventing Lower Urinary Tract Symptoms Consortium Analysis of Avon Longitudinal Study of Parents and Children

    Get PDF
    AIM: Little is known about the association of the school toilet environment with voiding behaviors and lower urinary tract symptoms (LUTS) in adolescents. The purpose of the present longitudinal, secondary data analysis is to examine whether the school toilet environment at age 13, including bullying, is associated with LUTS at ages 13 and 19. METHODS: The sample comprised 3962 female participants from the Avon Longitudinal Study of Parents and Children (ALSPAC). At age 13, participants reported on 7 school toilet environment characteristics and a range of LUTS items. At age 19, participants completed the Bristol Female Lower Urinary Tract Symptoms (ICIQ-BFLUTS) questionnaire. RESULTS: All toilet environmental factors were associated with at least one LUTS outcome at age 13. Holding behavior was associated with all school toilet environmental factors, with odds ratios (ORs) ranging from 1.36 (95% CI: 1.05, 1.76) for dirty toilets to 2.38 (95% CI: 1.60, 3.52) for feeling bullied at toilets. Bullying was associated with all LUTS symptoms; ORs ranged from 1.60 (95% CI: 1.04, 2.07) for nocturia to 2.90 (95% CI: 1.77, 4.75) for urgency. Associations between age 13 school toilets and age 19 LUTS were in the same direction as age 13 LUTS. CONCLUSION: This is the first examination of associations between school toilets and LUTS. Toileting environments were cross-sectionally associated with LUTS in adolescent girls. While further work is needed to determine whether these associations are causal, school toilet environments are modifiable and thus a promising target for LUTS prevention

    The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081

    Get PDF
    The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens

    Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach

    Get PDF
    Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006–2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data

    Modular Evolution of DNA-Binding Preference of a Tbrain Transcription Factor Provides a Mechanism for Modifying Gene Regulatory Networks.

    No full text
    <p>Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites.</p

    Coagulopathy signature precedes and predicts severity of end‐organ heat stroke pathology in a mouse model

    No full text
    © 2020 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and Haemostasis Background: Immune challenge is known to increase heat stroke risk, although the mechanism of this increased risk is unclear. Objectives: We sought to understand the effect of immune challenge on heat stroke pathology. Patients/Methods: Using a mouse model of classic heat stroke, we examined the impact of prior viral or bacterial infection on hematological aspects of recovery. Mice were exposed to heat either 48 or 72 hours following polyinosinic:polycytidylic acid (poly I:C) or lipopolysaccharide injection, time points when symptoms of illness (fever, lethargy, anorexia) were minimized or completely absent. Results: Employing multivariate supervised machine learning to identify patterns of molecular and cellular markers associated with heat stroke, we found that prior viral infection simulated with poly I:C injection resulted in heat stroke presenting with high levels of factors indicating coagulopathy. Despite a decreased number of platelets in the blood, platelets are large and non-uniform in size, suggesting younger, more active platelets. Levels of D-dimer and soluble thrombomodulin were increased in more severe heat stroke, and in cases of the highest level of organ damage markers D-dimer levels dropped, indicating potential fibrinolysis-resistant thrombosis. Genes corresponding to immune response, coagulation, hypoxia, and vessel repair were up-regulated in kidneys of heat-challenged animals; these correlated with both viral treatment and distal organ damage while appearing before discernible tissue damage to the kidney itself. Conclusions: Heat stroke-induced coagulopathy may be a driving mechanistic force in heat stroke pathology, especially when exacerbated by prior infection. Coagulation markers may serve as accessible biomarkers for heat stroke severity and therapeutic strategies.US Army Medical Research Acquisition Agency (Grant/Award W81XWH-13-MOMJPC5-IPPEHA)USARO, Grant/Award (W911NF- 09-D-0001)NIH-DOD, Grant/Award (UM1-HL120877)National Institute of Environmental Health Sciences (Grant/ Award T32-ES007020
    corecore