5,217 research outputs found

    Behavioral biases when viewing multiplexed scenes:scene structure and frames of reference for inspection

    Get PDF
    Where people look when viewing a scene has been a much explored avenue of vision research (e.g., see Tatler, 2009). Current understanding of eye guidance suggests that a combination of high and low-level factors influence fixation selection (e.g., Torralba et al., 2006), but that there are also strong biases toward the center of an image (Tatler, 2007). However, situations where we view multiplexed scenes are becoming increasingly common, and it is unclear how visual inspection might be arranged when content lacks normal semantic or spatial structure. Here we use the central bias to examine how gaze behavior is organized in scenes that are presented in their normal format, or disrupted by scrambling the quadrants and separating them by space. In Experiment 1, scrambling scenes had the strongest influence on gaze allocation. Observers were highly biased by the quadrant center, although physical space did not enhance this bias. However, the center of the display still contributed to fixation selection above chance, and was most influential early in scene viewing. When the top left quadrant was held constant across all conditions in Experiment 2, fixation behavior was significantly influenced by the overall arrangement of the display, with fixations being biased toward the quadrant center when the other three quadrants were scrambled (despite the visual information in this quadrant being identical in all conditions). When scenes are scrambled into four quadrants and semantic contiguity is disrupted, observers no longer appear to view the content as a single scene (despite it consisting of the same visual information overall), but rather anchor visual inspection around the four separate “sub-scenes.” Moreover, the frame of reference that observers use when viewing the multiplex seems to change across viewing time: from an early bias toward the display center to a later bias toward quadrant centers

    On the factors causing processing difficulty of multiple-scene displays

    Get PDF
    Multiplex viewing of static or dynamic scenes is an increasing feature of screen media. Most existing multiplex experiments have examined detection across increasing scene numbers, but currently no systematic evaluation of the factors that might produce difficulty in processing multiplexes exists. Across five experiments we provide such an evaluation. Experiment 1 characterises difficulty in change detection when the number of scenes is increased. Experiment 2 reveals that the increased difficulty across multiple-scene displays is caused by the total amount of visual information accounts for differences in change detection times, regardless of whether this information is presented across multiple scenes, or contained in one scene. Experiment 3 shows that whether quadrants of a display were drawn from the same, or different scenes did not affect change detection performance. Experiment 4 demonstrates that knowing which scene the change will occur in means participants can perform at monoplex level. Finally, Experiment 5 finds that changes of central interest in multiplexed scenes are detected far easier than marginal interest changes to such an extent that a centrally interesting object removal in nine screens is detected more rapidly than a marginally interesting object removal in four screens. Processing multiple-screen displays therefore seems dependent on the amount of information, and the importance of that information to the task, rather than simply the number of scenes in the display. We discuss the theoretical and applied implications of these findings

    Generalized Ohm\u27s Law In A 3-D Reconnection Experiment

    Get PDF
    We report the measurement of non-ideal terms of the generalized Ohm\u27s law at a reconnection site of a weakly collisional laboratory magnetohydrodynamic plasma. Results show that the Hall term dominates the measured terms; resistive and electron inertia terms are small. We suggest that electron pressure (not measured) supports the observed quasistatic reconnection rate, and that anomalous resistivity, while not ruled out, is not required to account for the results

    Three-Dimensional Structure Of Magnetic Reconnection In A Laboratory Plasma

    Get PDF
    The local three-dimensional structure of magnetic reconnection has been measured for the first time in a magnetohydrodynamic (MHD) laboratory plasma at the Swarthmore Spheromak Experiment. An array of 600 magnetic probes which resolve ion inertial length and MHD time scale dynamics on a single shot basis measured the magnetic structure of partial spheromak merging events. Counter-helicity spheromaks merge rapidly, and reconnection activity clearly self-generates a local component of B which breaks the standard 2D symmetry at the ion inertial scale. Consistent with prior results, no reconnection is observed for co-helicity merging

    Discrimination of prostate cancer cells and non-malignant cells using secondary ion mass spectrometry

    Get PDF
    This communication utilises Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) combined with multivariate analysis to obtain spectra from the surfaces of three closely related cell lines allowing their discrimination based upon mass spectral ions

    Experimental Observation Of Energetic Ions Accelerated By Three-Dimensional Magnetic Reconnection In A Laboratory Plasma

    Get PDF
    Magnetic reconnection is widely believed responsible for heating the solar corona as well as for generating X-rays and energetic particles in solar flares. On astrophysical scales, reconnection in the intergalactic plasma is a prime candidate for a local source (Mpc) of cosmic rays exceeding the Greisen-Zatsepin-Kuzmin cutoff (∼10(19) eV). In a laboratory astrophysics experiment, we have made the first observation of particles accelerated by magnetic reconnection events to energies significantly above both the thermal and the characteristic magnetohydrodynamic energies. These particles are correlated temporally and spatially with the formation of three-dimensional magnetic structures in the reconnection region

    On choosing the start time of binary black hole ringdown

    Get PDF
    The final stage of a binary black hole merger is ringdown, in which the system is described by a Kerr black hole with quasinormal mode perturbations. It is far from straightforward to identify the time at which the ringdown begins. Yet determining this time is important for precision tests of the general theory of relativity that compare an observed signal with quasinormal mode descriptions of the ringdown, such as tests of the no-hair theorem. We present an algorithmic method to analyze the choice of ringdown start time in the observed waveform. This method is based on determining how close the strong field is to a Kerr black hole (Kerrness). Using numerical relativity simulations, we characterize the Kerrness of the strong-field region close to the black hole using a set of local, gauge-invariant geometric and algebraic conditions that measure local isometry to Kerr. We produce a map that associates each time in the gravitational waveform with a value of each of these Kerrness measures; this map is produced by following outgoing null characteristics from the strong and near-field regions to the wave zone. We perform this analysis on a numerical relativity simulation with parameters consistent with GW150914- the first gravitational wave detection. We find that the choice of ringdown start time of 3ms3\,\mathrm{ms} after merger used in the GW150914 study to test general relativity corresponds to a high dimensionless perturbation amplitude of 7.5×103 \sim 7.5 \times 10^{-3} in the strong-field region. This suggests that in higher signal-to-noise detections, one would need to start analyzing the signal at a later time for studies that depend on the validity of black hole perturbation theory.Comment: 23+4 pages, 22 figure

    Looking for trouble:a description of oculomotor search strategies during live CCTV operation

    Get PDF
    Recent research has begun to address how CCTV operators in the modern control room attempt to search for crime (e.g., Howard et al., 2011). However, an often-neglected element of the CCTV task is that the operators have at their disposal a multiplexed wall of scenes, and a single spot-monitor on which they can select any of these feeds for inspection. Here we examined how 2 trained CCTV operators used these sources of information to search from crime during a morning, afternoon, and night-time shift. We found that they spent surprisingly little time viewing the multiplex wall, instead preferentially spending most of their time searching on the single-scene spot-monitor. Such search must require a sophisticated understanding of the surveilled environment, as the operators must make their selection of which screen to view based on their prediction of where crime is likely to occur. This seems to be reflected in the difference in the screens that they selected to view at different times of the day. For example, night-clubs received close monitoring at night, but were seldom viewed in mid-morning. Such narrowing of search based on a contextual understanding of an environment is not a new idea (e.g., Torralba et al., 2006), and appears to contribute to operator's selection strategy. This research prompts new questions regarding the nature of representation that operators have of their environment, and how they might develop expectation-based search strategies to countermand the demands of the large influx of visual information. Future research should ensure not to neglect examination of operator behavior “in the wild” (Hutchins, 1995a), as such insights are difficult to gain from laboratory based paradigms alone

    Constraints on Type Ia Supernova Progenitor Companions from Early Ultraviolet Observations with Swift

    Full text link
    We compare early ultraviolet (UV) observations of Type Ia Supernovae (SNe Ia) with theoretical predictions for the brightness of the shock associated with the collision between SN ejecta and a companion star. Our simple method is independent of the intrinsic flux from the SN and treats the flux observed with the Swift/Ultra-Violet Optical Telescope (UVOT) as conservative upper limits on the shock brightness. Comparing this limit with the predicted flux for various shock models, we constrain the geometry of the SN progenitor-companion system. We find the model of a 1 M_sun red supergiant companion in Roche lobe overflow to be excluded at a 95% confidence level for most individual SNe for all but the most unfavorable viewing angles. For the sample of 12 SNe taken together, the upper limits on the viewing angle are inconsistent with the expected distribution of viewing angles for RG stars as the majority of companions with high confidence. The separation distance constraints do allow MS companions. A better understanding of the UV flux arising from the SN itself as well as continued UV observations of young SNe Ia will further constrain the possible progenitors of SNe Ia.Comment: accepted versio

    2-D and 3-D Temporal Modeling of Solute Migration through Low Permeable Media using Electrical Resistivity, Nacogdoches County, Texas

    Get PDF
    The Reklaw Formation is the upper bounding unit for the Carrizo-Wilcox Aquifer throughout the Gulf Coastal Plain of East Texas and consists of low permeability, glauconite-rich strata that isolate semi-confined portions of the aquifer system from potential contaminants. Electrical resistivity methods were employed within a forested watershed in Nacogdoches County, Texas to characterize solute transport. 2-D and 3-D temporal resistivity data collected with an AGI SuperSting (R8/IP) were processed with AGI Earthimager 2D/3D software for inversion modeling. Data were collected over 135 days within a 14 X 26 meter (46 X 85 feet) gridded survey at 15-day intervals after initiation of a NaCl solute plume; numerical modeling was developed from physical site characterizations. Resistivity analyses and numerical modeling demonstrated solute migration is extremely slow within the Reklaw Formation, confirming strata effectiveness for preventing contaminant migration into the Carrizo-Wilcox Aquifer. Numerical modeling indicated rapid solute dilution with migration dominated by diffusion. 2-D inversion modeling confirmed dominance of solute diffusion, but clearly identified macropore heterogeneity that increased advection transport; 3-D inversion modeling proved relatively ineffective. This study demonstrates the effectiveness of electrical resistivity characterization for delineating heterogenic and anisotropic controls on solute migration that are often poorly defined in simple numerical modeling
    corecore