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ABSTRACT 

The Reklaw Formation is the upper bounding unit for the Carrizo-Wilcox Aquifer 

throughout the Gulf Coastal Plain of East Texas and consists of low permeability, 

glauconite-rich strata that isolate semi-confined portions of the aquifer system from 

potential contaminants. Electrical resistivity methods were employed within a forested 

watershed in Nacogdoches County, Texas to characterize solute transport.  2-D and 3-D 

temporal resistivity data collected with an AGI SuperSting (R8/IP) were processed with 

AGI Earthimager 2D/3D software for inversion modeling. Data were collected over 135 

days within a 14 X 26 meter (46 X 85 feet) gridded survey at 15-day intervals after 

initiation of a NaCl solute plume; numerical modeling was developed from physical site 

characterizations. 

Resistivity analyses and numerical modeling demonstrated solute migration is 

extremely slow within the Reklaw Formation, confirming strata effectiveness for 

preventing contaminant migration into the Carrizo-Wilcox Aquifer. Numerical modeling 

indicated rapid solute dilution with migration dominated by diffusion. 2-D inversion 

modeling confirmed dominance of solute diffusion, but clearly identified macropore 

heterogeneity that increased advection transport; 3-D inversion modeling proved 

relatively ineffective. This study demonstrates the effectiveness of electrical resistivity 
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characterization for delineating heterogenic and anisotropic controls on solute 

migration that are often poorly defined in simple numerical modeling. 
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PREFACE 

The basis of this research was to characterize and delineate migration 

patterns of subsurface solute plumes within low permeable media. In this study, 

electrical resistivity and numerical modeling were the chosen method to achieve 

this. A secondary goal of this project was to evaluate the effectiveness of the AGI 

Supersting (R8/IPP) for 2-D and 3-D solute studies. This study was conducted 

between June and December of 2019.  

 The following manuscript was formatted to be submitted to the “Texas 

Water Journal” for publication. Additional data gathered in this study beyond the 

scope of prepared manuscript appears in Appendix A, including data collected, 

processed, and analyzed throughout the course of this investigation. 
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2-D and 3-D Temporal Modeling of Solute Migration through Low Permeable Media 

using Electrical Resistivity, Nacogdoches County, Texas 

 

ABSTRACT 

The Reklaw Formation is the upper bounding unit for the Carrizo-Wilcox Aquifer 

throughout the Gulf Coastal Plain of East Texas and consists of low permeability, 

glauconite-rich strata that isolate semi-confined portions of the aquifer system from 

potential contaminants. Electrical resistivity methods were employed within a forested 

watershed in Nacogdoches County, Texas to characterize solute transport.  2-D and 3-D 

temporal resistivity data collected with an AGI SuperSting (R8/IP) were processed with 

AGI Earthimager 2D/3D software for inversion modeling. Data were collected over 135 

days within a 14 X 26 meter (46 X 85 feet) gridded survey at 15-day intervals after 

initiation of a NaCl solute plume; numerical modeling was developed from physical site 

characterizations. 

Resistivity analyses and numerical modeling demonstrated solute migration is 

extremely slow within the Reklaw Formation, confirming strata effectiveness for 

preventing contaminant migration into the Carrizo-Wilcox Aquifer. Numerical modeling 

indicated rapid solute dilution with migration dominated by diffusion. 2-D inversion 
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modeling confirmed dominance of solute diffusion, but clearly identified macropore 

heterogeneity that increased advection transport; 3-D inversion modeling proved 

relatively ineffective. This study demonstrates the effectiveness of electrical resistivity 

characterization for delineating heterogenic and anisotropic controls on solute 

migration that are often poorly defined in simple numerical modeling. 
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INTRODUCTION 

The Carrizo-Wilcox Aquifer is one of the largest aquifers in the State of Texas, 

supplying over 55,000 hectare-meters (445,892 acre-feet) of water per year (TWDB 

2003) for as many as 60 counties throughout eastern portions of Texas.  Due to 

economic significance, the Carrizo-Wilcox Aquifer continues to be investigated for rates 

of recharge/discharge and solute transport through well monitoring and numerical 

modeling.  Although this aquifer has been the focus of many studies (e.g. Berg 1979; 

Dutton 2003; Fryer 2003; Mace 2000), the overlying confining beds of the Reklaw 

Formation have been hydrogeologically neglected in research.  The Reklaw is dominated 

by glauconitic shales that inhibit recharge in areas where Carrizo and Wilcox formations 

do not crop out, and thus is assumed to be a hydraulic barrier for potential contaminant 

introduction into the underlying aquifer.  The vertical hydraulic conductivity of the 

Reklaw is primarily controlled by near-continuous marine muds and shales within the 

formation (Fryar et al. 2003).   

Although traditional methods of determining hydraulic conductivity and 

transmissivity of a formation are considered reliable, additional modeling and analyses 

can increase accuracy.  By implementing electrical resistivity methods, along with 

numerical modeling, the low hydraulic conductivity and potential solute transport 
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mechanisms can be better characterized.  Both 2-D and 3-D electrical resistivity surveys 

can be helpful in identifying lithologic variations in resistivity, assist in determining the 

difference in saturated and unsaturated media, and track solute plumes (Aizebeokhai 

2002; Cardimona 2002; Loke 2015).  Because certain dissolved solids result in higher or 

lower resistivity measurements, a plume incorporated with elevated dissolved solids to 

reduce contact resistance can be tracked more easily over time, as it migrates through 

the vadose and phreatic zones.  In this study, infiltration of an aqueous salt solution was 

used as a marker for electrical resistivity data collection to differentiate stratum 

heterogeneity and anisotropy through delineation of variance in electrical conductivity, 

compared to non-saline saturated and unsaturated host media. The saline solution 

introduced into the subsurface consisted of 35 g/L (35 ppt), with a total amount of five 

liters (1.32 gallons) of solution being administered at the beginning of this study.  

This study was conducted in central Nacogdoches County within a forested 

watershed composed of mixed hardwoods (Figure 1).  The marine shales studied in this 

project are part of the Reklaw Formation that crops out throughout the northeastern 

portions of Texas as an upper, semi-confining, hydrostatritigraphic boundary of the 

Carrizo-Wilcox Aquifer.  The Reklaw Formation is part of the Claiborne Group, which are 

Middle Eocene sedimentary strata that exhibit interfingering of marine and non-marine 

sediments (Berg 1979).  These glauconitic shales are common in East Texas 

environments and suitable for temporal electrical resistivity modeling of solute 
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migration due to their natural, relatively low contact resistance; solute plume migration 

through single event infiltration within low permeability Reklaw strata was monitored 

for five months using 2-D and 3-D electrical resistivity surveying methods.   

Although this study involved five months of data collection in 15 day intervals, 

data from days 15, 45, 75, 105 and 135 after solute introduction are presented here for 

discussion of groundwater flow behavior, solute plume delineation and coupled 

numerical modeling.
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Figure 1. Location of the study area within the Reklaw Formation in Nacogdoches County, 
Texas. Outcrop area of Reklaw Formation is shown in red; study site is represented by the star 
east of Nacogdoches, Texas. 
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STUDY AREA 

The Gulf Coastal Plain of East Texas is primarily composed of Paleocene to 

Eocene marine and non-marine sedimentary rocks.  During the early Mesozoic, Pangea 

began disassembling, causing extensive deformation that produced a geosyncline 

suitable for early Gulf of Mexico evaporite deposition. Jurassic evaporite deposition and 

influx of terrestrial sediments induced subsidence of the Gulf Coast, which continued 

through the Cretaceous as epicontinental seas extended northward (Ewing et al 1960; 

Garrison and Martin 1973).  During the Paleogene, the gulf coastal zone prograded 

south to southeast, allowing the accumulation of shallow-marine and nonmarine 

sediments, which exhibited lobate patterns, interspersed with beach and bar systems 

(Garrison and Martin 1973; Hosman 1996). The deposition of interfingering marine and 

non-marine sediments led to the formation of the Claiborne Group, which is 

represented by three fairly rapid marine transgressions followed by slower regressions 

(Berg 1970; Eargle 1968).   

The Claiborne Group is comprised of the Carrizo Sandstone, Reklaw Formation, 

Queen City Sandstone, Weches Formation, Sparta Sandstone, Cook Mountain 

Formation, and the Yegua Formation (Figure 2).  Carrizo Sandstone is the basal 

formation of the Claiborne Group, deposited upon the underlying eroded Wilcox Group.  
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Figure 2. Stratigraphic column of the Claiborne Group. Aquifer bearing 
horizons highlighted in blue (modified from Watkins, 2018; Fisher, 1964; 
Forestar, 2011).  
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The Carrizo was deposited during a marine regression and shows regressive 

succession of barrier island deposits from beach and shoreface sediments through dune 

and lagoonal environments (Berg 1979).  Reklaw strata conformably overlies the Carrizo 

Sandstone throughout portions of East Texas; the loamy nature of Reklaw indicates 

shallow water deposition, just beyond the zone of wave action (Wendlandt and Knebel 

1929).  The lowermost Reklaw contains brown glauconitic clays and dark-blue, 

micaceous, sandy clays, with zones of hematite-cemented ironstone concretions 

(Wendlandt and Knebel 1929). The uppermost Reklaw consists of dark grey to brown, 

fossiliferous lignitic, and laminated clays (Berg 1979).  Queen City Sandstone 

conformably overlies the Reklaw throughout East Texas. Queen City was deposited 

along a shallow marine shoreline, as very fine- to medium-grained quartz sand, with 

interbedded layers of dark carbonaceous shale, silt, and impure lignite (Hosman 1996). 

In sequential order, the Weches, Sparta, Cook Mountain, and Yegua formations were 

conformably deposited on top of the Queen City (Berg 1979; Hosman 1996; Stenzel 

1938; Wedlandt and Knebel 1929) as proximal coastal deposits associated with minor 

transgressions/regressions. 

The Reklaw Formation is the upper, semi-confining boundary of the Carrizo-

Wilcox Aquifer which stretches throughout eastern Texas and into Arkansas and 

Louisiana.  The Carrizo-Wilcox Aquifer is composed of the Hooper, Simsboro, and Calvert 

Bluff formations of the Wilcox Group and the Carrizo Sand of the Claiborne Group,  
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which lies unconformably over the Wilcox Group (Mace et al. 2000).  This aquifer is 

bounded below by marine deposits of the Midway Group and above by the Reklaw 

Formation, which creates a semi-confining horizon between Carrizo Sandstone and the 

minor aquifer of the Queen City Formation (Fryar et al. 2003).  The Reklaw exhibits 

extremely low permeability, restricting groundwater movement between the Carrizo 

and the overlying Queen City formations, and acts as a low permeability boundary to 

reduce potential contaminant migration into the Carrizo-Wilcox Aquifer from shallow 

subcrop sources.  Reklaw permeability is generally reported as exceptionally low with a 

vertical hydraulic conductivity of approximately 7.9E-05 m/day (2.6E-04 ft/day) (Fogg et 

al. 1983).   

 Within the Interior Coastal Plain, the study area is dominated by five soil series: 

Tuscosso, Hannanatchee, Nacogdoches, Sacul, and LaCerda; however, soils at the study 

site are limited to LaCerda series. LaCerda soils are maturely weathered with low 

organic and carbonate lime content formed by heavy weathering driven primarily by 

oxidation of iron-rich minerals (e.g. hematite) that produce red, yellow, or brown iron 

oxides.  Although these soils are highly weathered, they sustain significant vegetation as 

demonstrated by the mixed deciduous forest of the study site, including several 

dominant species: mockernut hickory (Carya tomentosa), loblolly pine (Pinus taeda), 

white oak (Quercus alba), winged elm (Ulmus alata), sweetgum (Liquidambar 

styraciflua), white ash (Fraxinus americana), southern red oak (Quercus falcata), willow 
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oak (Quercus phellos), post oak (Quercus stellata), eastern red cedar (Juniperus 

virginiana), and american holly (Ilex opaca). 

The climate of the region is variable; maximum precipitation typically occurs late 

fall to early spring with a ten-year historical average of 128.5 cm (50.6 inch) (NOAA 

2019).  Average annual high temperature is 24.8 °C (76.6 °F), average annual low 

temperature is 12.4 °C (54.3 °F) and average annual precipitation is 125.1 cm (49.25 

inch) (NOAA 2019).  During the study period (June 2019 to November 2019), the 

maximum and minimum temperatures were 34.2° C (93.6 °F) and 5.0 °C (41 °F) in July 

and October, respectively. Precipitation varied throughout the study period ranging 

from a low of 0.03 cm (0.01 inch) in August to a high of 0.81 cm (0.32 inch) in November 

(Figure 3) (NOAA 2019).  
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ELECTRICAL RESISTIVITY METHODS 

Two-dimensional (2-D) and three-dimensional (3-D) direct current (DC) resistivity 

surveys were conducted over a five-month period within a single 14 by 26 meter (46 X 

85 feet) grid.  Surveys were conducted using an Advanced Geoscience Inc. (AGI) 

SuperSting (R8/IP) multi-electrode earth resistivity meter.  2-D electrical resistivity 

surveys were conducted using dipole-dipole array configuration with one meter (3.3 

feet) electrode spacing; 3-D surveys used radial dipole-dipole array configuration with 

two meter (6.6 feet) electrode spacing to ensure high accuracy and increased shallow 

depth resolution.  Arrays were selected for high sensitivity to horizontal variations, but 

relatively low sensitivity to vertical variations (Aizebeokhai 2010). Because electrode 

spacing dictates depth of penetration and profile resolution, small electrode spacing 

was utilized throughout the survey; as electrode spacing increases, so will depth of 

penetration, however resolution within the shallower depths will decrease (AGI 2016).   

Due to the study area predominantly consists of clay sediments, electrical 

contact resistance between the ground and each electrode was maintained below 1,500 

Ωm (4,900 Ωft).  If initial electrode contact resistance exceeded 1,500 Ωm 
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(4,900 Ωft), then electrodes were wetted with non-saline water prior to the survey to 

lower contact resistance below 1,500 Ωm (4,900 Ωft). Both 2-D and 3-D electrical 

resistivity surveys were conducted using time estimates of 800 ms and cycled twice per 

electrode pair.  The SuperSting (R8/IP) was set to inject a 2,000 mA current for each 

survey measurement and was set to reach a maximum error threshold of 2% between 

measurement cycles.   

Recorded resistivity measurements were processed with AGI Earthimager 2-D/3-

D inversion modeling software.  Both 2-D and 3-D pseudosections were inverted with 

default surface setting, using smoothing model inversion; max RMS error and error 

reduction percentages were unselected, while smoothness factor and damping factor 

were set to 10.  To improve inverted resistivity models, data outliers, less than 10%, 

were removed using data misfit histograms.  Terrain correction was incorporated into 

resistivity sections to better constrain the relationship between topography and 

electrical resistivity analyses; terrain files were constructed through hydro-leveling at 

the study site with sub-centimeter (<0.5 in) accuracy.
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NUMERICAL MODELING METHODS 

Following 2-D and 3-D electrical resistivity analyses, numerical modeling was 

conducted to independently evaluate hydraulic conductivity and solute transport within 

Reklaw strata.  Within the 14 by 26 meter (46 X 85 feet) survey grid, infiltration tests, 

piezometer slug tests, and sediment analyses were conducted to aid in the development 

of numerical models.  Infiltration tests were conducted in four different locations using 

Turf-Tec infiltration rings with four iterations per infiltration site; all infiltration ring sites 

were within four meters (13 feet) of solute introduction location (Figure 4).  Although 

none of the soil infiltration tests reached steady state infiltration, they did approach 

these conditions.  

Slug tests were conducted on three, previously installed piezometers within the 

study area; slug test data were acquired using Solinst Leveloggers pressure transducers 

with initial piezometer head measured using a Solinst Mini Water Level Meter Model 

102M. Slugs of 500 ml (30 in3), 1000 ml (60 in3) and 2000 ml (120 in3) were introduced 

into each piezometer and allowed to equilibrate for a minimum of six hours. All slug 

tests were repeated a minimum of three times and average hydraulic conductivity was 

calculated for each well using the Hvorslev method (Hvorslev 1951).  
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Figure 4. Plan view of the study site showing location of each piezometer, soil coring, and infiltration 
test conducted, as well as the location for every other electrode labeled within the 3-D resistivity array. 
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Sediment analyses were conducted using cores collected from three locations 

within the study area; each core was 250 cm (98 inch) deep and sampled in 10 cm (4 

inch) increments (n=75).  Bulk density was calculated based on methods described by 

Fetter (2001), which averaged 1.68 g/cm3 (105 lb/ft3).  Hydraulic conductivity based on 

particle size distribution was calculated using the methods presented by Svensson 

(2014). Effective porosity was calculated for each interval based on the methods 

presented by Stephens et al. (1998); bulk density and particle size analyses for each 

sample increment were calculated; particle size analyses were conducted using the 

hydrometer method (Bouyoucos 1962).  Bulk density analyses were conducted to 

determine volumetric water content and porosity; porosity was calculated based on 

average particle density of 2.65 g/cm3 (165 lb/ft3) for siliciclastic sediments (Fetter 2001) 

and measured bulk density.  Particle size analyses were used to determine vertical 

anisotropy in porosity and hydraulic conductivity in order to develop solute transport 

modeling of advection, hydrodynamic dispersion, adsorption, and retardation.   

Advection, driven by hydraulic gradient, is usually the predominant process for 

solute transport (Postigo et al. 2018).  Solute transport is a function of the flow rate and 

solute concentration within groundwater (Fetter 2001), where solute advection is a 

function of average linear velocity. Average linear velocity was calculated as:  

                                                           𝑣௫ =
௄

௡೐

ௗ௛

ௗ௟
                                                            (1) 
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where, 𝑣௫ is average linear velocity, K is hydraulic conductivity, 𝑛௘ is effective porosity, 

and dh/dl is the hydraulic gradient.   

Hydrodynamic dispersion includes molecular diffusion and mechanical dispersion 

(Fetter 2001), where solutes being transported through dispersion are a function of flow 

pattern heterogeneity within sediment.  Solute dispersion results in both longitudinal 

and transverse flow migration represented by equations from Fetter (2001):  

                                                                𝐷௅ = 𝑎௅𝑣௜ + 𝐷∗ 

                                                              𝐷் = 𝑎்𝑣௜ + 𝐷∗                                                         (2) 

where, 𝐷௅ is hydrodynamic dispersion coefficient parallel to the principle direction of 

flow (longitudinal), 𝐷்  is hydrodynamic dispersion coefficient perpendicular to the 

principle direction of flow (transverse), 𝛼௅ is longitudinal dynamic dispersivity, 𝛼் is 

transverse dynamic dispersivity, and 𝐷∗ is the effective diffusion coefficient. 

Adsorption and retardation are similar processes that hinder the rate at which 

solute migrates.  Adsorption occurs in porous materials when solutes diffuse and adhere 

(sorbed) to the surface of grain particles, thus reducing or retarding solute transport 

(Wood et al. 1990). Adsorption for the study site was calculated as a linear sorption 

isotherm as described by Travis and Etnier (1981):  

                                                                       𝐶∗ = 𝐾ௗ𝐶                                                              (3) 

where, 𝐶∗ is the mass of solute sorbed per dry unit of weight of solid, 𝐶 is the 

concentration of solute in solution in equilibrium with the mass of solute sorbed on the 
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solid, and 𝐾ௗ being the distribution coefficient.  The distribution coefficient (𝐾ௗ) for 

chlorine (Cl) was modeled at 1.7E-3 for clay sediments as reported by Sheppard et al. 

(2009).  Using their distribution coefficient, the retardation factor was calculated using 

the equations of Anderson (1979), Faust and Mercer (1980), Prickett et al. (1981), and 

Srinivasan and Mercer (1988):  

                                                                             1 +
஻೏

ఏ
𝐾ௗ = 𝑟௙                                                            (4) 

where, 𝑟௙ is the retardation factor, 𝐵ௗ is bulk density of the soil and θ is the porosity of 

saturated media.  These data for advection, dispersion, adsorption and retardation were 

used to model the spatial pattern of solute plume development in one-dimensional and 

two-dimensional uniform flow fields.  Calculation of solute concentration in a one-

dimensional field was evaluated based on the equation by Crank (1956): 

                                                                      𝐶௜(𝑥, 𝑡) = 𝐶଴erfc ௫

ଶ(஽∗௧)బ.ఱ
                                     (5) 

where, 𝐶௜ is the solute concentration at distance 𝑥 from the source at time 𝑡 since solute 

introduction, 𝐶଴ is the original concentration, which remains a constant, and erfc is a 

complementary error function (Fetter 2001).  Calculation of concentration of the solute 

plume within a two-dimensional field followed the method of De Josselin and De Jong 

(1958):  

                                  𝐶(𝑥, 𝑦, 𝑡) =
஼బ஺

ସగ௧(஽ಽ஽೅)బ.ఱ
exp൤−

൫(௫ି௫బ)ି௩ೣ௧൯
మ

ସ஽ಽ௧
−

(௬ି௬బ)మ

ସ஽೅௧
൨                     (6) 
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where, 𝐴 is the area in square centimeters.  The concentrations at a distance 𝑥, 𝑦 and 

time 𝑡 were grid formatted and imported into Surfer software for graphical model 

generation.  Numerical modeling of solute plumes were calculated for 15, 45, 75, 105, 

and 135 days after the solute introduction to compare with resistivity analyses in this 

manuscript.
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RESULTS AND DISCUSSION 

Throughout this study, various techniques were employed to evaluate solute 

plume migration patterns within the Reklaw Formation.  Slug tests were conducted on 

three piezometers within the study area (Figure 4) to determine the hydraulic 

conductivity using the Hvorslev method (Fetter 2001); piezometers 1, 2 and 3 exhibited 

hydraulic conductivities of 7.15E-06 cm/sec (2.8E-06 in/sec), 2.02E-04 cm/sec (7.95E-05 

in/sec) and 1.86E-04 cm/sec (7.32E-05 in/sec), respectively.  Temporal water table 

variations within the study site were monitored from June to November, indicated total 

water table fluctuations of less than one meter (three feet) throughout the study 

duration and less than ten centimeters (four inches) within any diurnal cycle.   

 Soil borings were conducted at three locations within the study site to assess 

local heterogeneity and anisotropy. Borings were collected in 10 cm (4 inch) increments 

to a depth of 250 cm (98 inch) to determine bulk density and particle size composition in 

order to calculate variability in hydraulic conductivity (Figure 5).  Hydraulic conductivity 

based on core analyses ranged from 1.05E-02 cm/sec (4.1E-03 in/sec) to 1.67E-05 

cm/sec (6.5E-06 in/sec), but averaged 4.14E-03 cm/sec (1.6E-03 in/sec). Surface 

infiltration ranged from 2.0E-03 cm/sec (7.8E-04 in/sec) to 2.0E-02 cm/sec (7.8E-03  
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Figure 5. Particle-size distribution, porosity, and hydraulic conductivity values from ground level to 
250 cm (98 in) deep for sediment core sampling proximal to solute introduction location. Hydraulic 
conductivity values in graph are measured in cm/sec. 
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in/sec) based on standard infiltration ring analyses within the study area, confirming 

that calculated hydraulic conductivities were reasonable. 

2-D and 3-D electrical resistivity methods were employed to map solute plume 

migration in 15-day intervals following solute injection.  The introduced solute consisted 

of five liters (300 in3) of 35 g/L (35 ppt) NaCl that was inserted between electrodes 49, 

50, 64, and 65 of the 3-D study grid (Figure 4) or between electrodes 13 and 14 in the 2-

D survey line; solute introduction was via a plastic liner installed 20 cm (8 in) into the 

land surface with a diameter of 30 cm (12 in) and a perforated bottom.  The 3-D 

resistivity survey grid was the primary reference used to model solute plume movement 

over the five month duration of this study. 
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3-D RESISTIVITY ANALYSES 

 All 3-D surveys were conducted with 112 electrodes in the same location and a 

survey grid oriented in NW-SE trending lines, with 14 electrodes along the y-axis and 8 

electrodes along the x-axis in uniform two meter (6.6 feet) spacing to produce a survey 

grid with a depth resolution of approximately 6.5 meters (21 feet) (Figure 6). 

Background resistivity data were collected prior to the five-liter (300 in3) solute solution 

introduced on June 28, 2018.  

3-D: Initial Conditions 

 The initial 3-D survey was conducted prior to solute plume infiltration, core 

sampling, and infiltration ring analyses, in order to acquire minimally-disturbed 

background data of the study site (Figure 6A).  Initial 3-D survey data exhibit significant 

variance in resistivity measurement throughout the survey and unsaturated conditions 

extended to more than 2.5 m (8.2 feet) deep up gradient and less than 1.5 m (4.9 feet) 

deep down gradient. Minor variations in resistivity at shallow depths are attributable to 

root structures and associated vegetation within the forested watershed. Resistivity 

variations at depth are attributed to heterogeneous iron cements throughout the 

Reklaw Formation. This initial model suggests relatively simple, layered strata with 

anisotropy and heterogeneity induced by a combination of biotic and abiotic anomalies. 
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Figure 6. Dynamic slices of 3-D inverted resistivity models: A) Initial background survey (Day 1) (RMS = 
8.8%, L2 norm = 1.1, iteration = 8); B) 15-day survey (RMS = 6.9%, L2 norm = 1.0, iteration = 8); C) 45-day 
survey (RMS = 2.8%, L2 norm = 0.2, iteration = 8); D) 105-day survey (RMS = 2.2%, L2 norm = 0.8, 
iteration = 8). 
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3-D: 15-Day Survey 

 The 15-Day Survey following solute infiltration showed similar conditions to 

background 3-D resistivity survey analyses, with a slight decline in the interpreted water 

table depths of approximately 50 cm (20 in), based on variation of high and low 

resistivity measurements (Figure 6B). Heterogeneities in the upper portion are more 

distinct and are associated with declining water table effects on local vegetation, while 

anomalies in the lower portion remain relatively consistent. The solute infiltration site in 

the center of the survey grid did not produce any visible anomaly; however, a minor 

decrease in resistivity is observed at a depth of approximately 75 cm (30 in), seen in the 

small elliptical resistivity anomaly near the upper convergence of the two vertical slices 

in the figure 6B.  This minor anomaly is likely the result of solute infiltration; however, 

variation in resistivity at this location is not significant compared to other anomalies 

within the 3-D resistivity survey and would likely not be discernable if this was not an 

experimental project with known solute infiltration data. 

3-D: 45-Day Survey  

The 45-Day Survey continued to demonstrate similar conditions to the initial 

background 3-D survey but experienced a greater decrease in the water table to 

approximately 60 cm (24 in), indicated by the high resistivity values during this survey 

(Figure 6C). This decrease in soil moisture can be attributed to the increased moisture 

absorption from the surrounding vegetation, due to a lack of precipitation during the 
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month of July. After 45 days of solute plume migration, an area located within the 

center of the survey grid demonstrated an area of lower resistivity at a depth of 

approximately 85 cm (33 in), which was perceived to be the solute plume; however, due 

to a variety of irregular anomalies produced by the AGI software, this could not be 

definitively proven; 75-Day 3-D resistivity survey data did not appear significantly 

different than 45-Day resistivity survey data and thus was excluded from this 

manuscript.   

3-D: 105-Day Survey 

 The 105-Day Survey indicates higher moisture content throughout the survey 

grid with subdued geophysical anomalies (Figure 6D).  Saturated conditions do not 

appear to have risen significantly within the study site as compared to the 15-Day 

Survey; however, total soil moisture appears to have increased as a result of multiple 

precipitation events from June to November of 2018. Reduction in anomalies in the 

upper zones is likely attributable to a decrease in evapotranspiration during late fall with 

the seasonal shift in water uptake by trees in the study area within this forested 

watershed. As with the 15-Day Survey, a slight decrease in resistivity appears in the 105-

Day resistivity inversion at the site of solute infiltration (Figure 6D) and extends from the 

surface to more than a meter (three feet) deep and nearly two meters (seven feet) in 

diameter. Because it is improbable that solute migration would have occurred 
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significantly upward towards the land surface, this anomalous rise is attributed to 

increased local recharge due to initial soil disturbance at the site of solute infiltration.
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2-D ANALYSES AND NUMERICAL MODELING 

 2-D resistivity surveys were conducted with 28 electrodes at one-meter-spacing 

(3.3 feet) in the same location and orientated in an NW-SE trending line through the 

center of the 3-D survey grid, producing 27-meter-long (89 feet) survey lines with depth 

resolution of approximately three meters (ten feet).  Complimentary numerical 

modeling was conducted based on field-derived calculations of hydraulic conductivity in 

order to assess predictive modeling of solute migration as compared to geophysical 

monitoring through resistivity analyses.   

2-D: 15-Day Analyses 

 Numerical modeling and 2-D resistivity analyses conducted 15 days after the 

solute was introduced (Figure 7A & 8A) indicate low saturated surface material to a 

depth of approximately one meter (3.3 feet); the top of the water table at 15 days was 

1.6 m (5.2 ft) deep. Between electrodes 13 and 15, resistivity analyses showed the 

solute plume (Figure 7A) was 75 cm (29.5 inch) wide and extended to a depth of one 

meter (3.3 feet). Refined resistivity inversion conducted between electrodes 9 and 18 

(Figure 8A) indicated more complex migration behavior with a solute plume 50 cm (20 

in) wide that descended near-vertically for 40 cm (16 in), migrated predominantly 

laterally to the southeast for 50 cm (20 in), and then again migrated near vertically for 

an additional 40 cm (16 in).  
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Figure 7. 2-D inverted electrical resistivity sections: A) 15-day survey (RMS error = 2.57%, L2 norm = 0.73, 
iteration = 8); B) 45-day survey (RMS error = 2.44%, L2 norm = 0.65, iteration = 8); C) 75-day survey 
(RMS = 2.91%, L2 norm = 0.93, iteration = 8); D) 105-day survey (RMS = 2.24%, L2 norm = 0.55, iteration 
= 8); E) 135-day survey (RMS = 3.66%, L2 norm = 1.22, iteration = 8). 
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Figure 8. Refined inverted resistivity sections (left) with associated numerical model (right): A) 15-day 
survey (RMS error = 1.46%, L2 norm = 0.24, Iteration = 8.); B) 45-day survey (RMS error = 2.09%, L2 
norm = 0.48, Iteration = 8.); C) 75-day Survey (RMS error = 1.98%, L2 norm = 0.36, Iteration = 8.); D) 
105-day survey (RMS error = 1.82%, L2 norm = 0.37, Iteration = 8.): E) 135-day survey (RMS error = 
1.79%, L2 norm = 0.32, Iteration = 8). 
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Numerical solute modeling (Figure 8A) suggested that the center (highest 

concentration) of the solute concentration plume migrated 10 cm (4 in) in the direction 

of advection (water table mapping indicates advection within the study site is oriented 

at 192 degrees azimuth) with the bulk of the solute migration induced by diffusion 

(modeling indicates that most solute concentration was <0.5 mg/L (<0.5 ppm) after 15 

days). Comparison of 2-D numerical modeling in horizontal, homogeneous and isotropic 

media underestimated the extent of solute migration at 15 days as compared to the 

more complex solute migration patterns documented in 2-D vertical resistivity profiling. 

While the solute plume did not move significantly based on resistivity analyses, 

geophysical data illustrated well the complexity of vertical heterogeneity within the 

Reklaw Formation where permeability boundaries promoted lateral movement 

interspersed with vertical solute migration most likely along macropores. Various 

locations of higher resistivity were observed throughout the upper portion of the study 

site, due to the abundance of unsaturated material and vegetation variability within 

forested watersheds. 

2-D: 45-Day Analyses 

 Numerical modeling and 2-D resistivity analysis conducted 45 days after solute 

injection (Figure 7B & 8B) continued to demonstrate low saturated media to a depth of 

approximately two meters (6.6 ft); the top of the water table at 45 days was 2.3 m (7.5 

ft) deep.  Between electrodes 13 and 15, the size of the solute plume (Figure 7B) 
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increased to 80 cm (32 in) wide and remained 100 cm (3.3 ft) deep.  Refined resistivity 

inversion between electrodes 9 and 18 (Figure 8B) indicated the solute plume was 70 

cm (28 in) wide that descended nearly vertically for 60 cm (24 in), before it migrated 

laterally to the southeast for 50 cm (20 in).  

The 45-Day spatial pattern of solute transport was similar to the 15-Day analyses 

but showed greater lateral migration both down- and up-gradient from initial solute 

introduction, suggesting greater solute diffusion effects.  According to numerical solute 

modeling (Figure 8B), the center of the solute concentration plume should have been 

located 12 cm (4.7 in) in the direction of advection with the majority of the solute 

migration prompted by diffusion.  Solute modeling after 45 days indicated the 

concentration had decreased to <6E-10 mg/L (ppm).  2-D vertical resistivity images 

continued to indicate areas of high resistivity among the upper portions of the study site 

due to unsaturated material, increased porosity and vegetation. 

2-D: 75-Day Analyses 

Numerical modeling and 2-D resistivity analysis conducted 75 days after solute 

injection (Figure 7C & 8C) show an increase in low saturated media, reaching a depth 

approximately 2.3 m (7.5 ft); the top of the water table at 75 days was approximately 

3.1 m (10 ft) deep.  Resistivity analyses between electrode 13 and 15 (Figure 7C) indicate 

the solute plume increased to 85 cm (34 in) wide, but remained vertically stagnant, 

retaining a depth of 100 cm (3.3 ft).  Refined resistivity inversion between electrode 9 
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and 18 (Figure 8C) indicated a solute plume 70 cm (28 in) wide that descended nearly 

vertically for 60 cm (24 in), before migrating laterally to the southeast for 40 to 45 cm 

(16-18 in).  Numerical solute modeling (Figure 8C) suggested the center of the solute 

plume should not have shifted laterally nor transversely since the 45-day interval; 

however, solute modeling after 75 days indicated the concentration decreased to < 9E-

19 mg/L (ppm).  Two-dimensional resistivity inversion images continued to locate areas 

of low saturated material and vegetation anomalies, demonstrated by the areas of high 

resistivity throughout the upper portions of the study site. 

2-D: 105-Day Analyses 

 Numerical modeling and 2-D resistivity analysis conducted 105 days after 

injection (Figure 7D & 8D) indicated an increase in low saturated media to a depth of 

approximately 2.8 m (9.2 ft); the top of the water table at 105 days was 3.3 m (11 ft) 

deep.  Resistivity analyses between electrode 13 and 15 (Figure 8D) indicated the solute 

plume increased to 125 cm (4 ft) wide and reached a depth of one meter (3.3 ft).  

Refined resistivity inversion between electrode 9 and 18 (Figure 8D) indicated the solute 

plume of 90 cm (35 in) wide moved laterally 80 cm (32 in), before showing signs of 

vertical ascension.  Numerical solute modeling (Figure 8D) indicated the center of 

concentration within the solute plume should not have shifted laterally or transversely 

since 75-day analyses.  Solute modeling after 105 days demonstrated a decrease in 

concentration to <3E-27 mg/L (ppm).  The 2-D resistivity images continued to 
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demonstrate areas of high resistivity, due to regions of low saturated material and 

vegetation.   

2-D: 135-Day Analyses 

 Numerical modeling and 2-D resistivity analysis conducted 135 days after 

injection (Figure 7E & 8E) demonstrated a significant increase in saturated media and 

water table depth; the top of the water table at 135 days was approximately 90 cm (35 

in) deep.  Resistivity analyses between electrode 13 and 15 (Figure 7E) indicated the 

solute plume had increased to 175 cm (5.6 ft) wide and continued to resist vertical 

subsidence, with a solute plume depth of one meter (3.3 ft).  Refined resistivity 

inversion between electrode 9 and 18 (Figure 8E) indicated the solute plume increased 

to 100 cm (3.3 ft) wide and moved laterally 90 cm (35 in) since the 105 day model.  

Numerical solute modeling (Figure 8E) showed the center of concentration should not 

have migrated further southeast since the 105-day interval, but concentrations should 

have decreased to <5E-36 mg/L (ppm).  Due to the high water table depth and increase 

in saturated media, the areas of low saturation diminished and demonstrated lower 

resistivity values than previous months.
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CONCLUSIONS 

Electrical resistivity methods and numerical modeling were used to evaluate 

solute plume migration over a period of 135 days in strata of the Reklaw Formation.  

These analyses were developed to evaluate the effectiveness of resistivity methods in 

characterization of groundwater contaminant migration within low permeability media 

and forested watersheds; numerical modeling was introduced to compare traditional 

groundwater modeling methods with site specific geophysical data. Modeled data 

confirm that the low volume of salt solution introduced in this study would not have had 

a significant effect on permeability due to potential induced soil swelling because 

modeled concentrations above ambient conditions are well below 1 mg/L (ppm) in less 

than 15 days after solute introduction. 3-D resistivity analyses conducted prior to solute 

introduction allowed for unaltered background data to be compared with changes after 

the solute was infiltrated.   

Data collected from piezometer slug tests represented similar hydraulic 

conductivity values as compared with infiltration ring tests and particle size analyses, 

assisting in validation of these results.  Hydraulic conductivity values produced through 

the combination of these tests demonstrated an average of 4.14E-03 cm/sec (1.6E-03 

in/sec) throughout study site sediments with a minimum and maximum of 1.67E-05 
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cm/sec (6.57E-06 in/sec) and 1.05E-02 cm/sec (4.13E-03 in/sec), respectively. Variability 

is attributed to heterogeneity and anisotropy throughout the Reklaw Formation. 

Resistivity analyses were conducted using an AGI SuperSting (R8/IP) to produce 

2-D and 3-D surveys at regular intervals following the introduction of a NaCl solute 

solution into the groundwater system. The NaCl solution was minor, with only five liters 

(300 in3) of solute at 35 mg/L (ppt), but allowed resistivity analyses to easily locate the 

solute plume within the subsurface due to the minor conductance increase.  

Resistivity data inversion for 3-D analyses produced models with highly irregular 

subsurface anomaly boundaries, suggesting that processing software was unable to 

effectively render models for large 3-D resistivity surveys (at the time of this research, 

no published studies had incorporated 112 electrodes into a single 3-D resistivity survey 

with an AGI SuperSting (R8/IP)). In an attempt to improve resistivity analyses, various 

array configurations (e.g., dipole-dipole, radial-dipole, and mixed gradient) were 

attempted, but modeled inversions remained consistently poor. While distinct solute 

plume migration was not documented in 3-D resistivity surveys, minor electrical 

anomalies proximal to the solute infiltration site suggests that resistivity data may 

capture small 3-D solute plumes, but inversion modeling could not definitively resolve 

these plumes as a result of either inversion software limitations or electrode spacing. 

Future studies should consider reducing electrode spacing to one meter (3.3 ft) on 3-D 

surveys for solute plume delineation in low permeability media. 
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The combination of 2-D resistivity surveying and numerical modeling better 

characterized migration patterns and concentration variances of the solute plume as it 

migrated through low permeable strata.  Over the course of 135 days, 2-D electrical 

resistivity inversions resolved solute plume migration as it moved transversely; inverted 

resistivity sections indicate vertical movement reached a total of 100 cm (40 in) deep, 

with 90 cm (35 in) lateral migration.  2-D resistivity sections tracked the solute as 

diffusion dominated transverse migration through the subsurface and was also able to 

characterize this movement in the northwest direction.  Numerical models 

demonstrated migration patterns of the solute plume as it was carried through the 

subsurface under the combined effects of advection, diffusion, and dispersion.  Due to 

the flow direction of subsurface water (azimuth of 192 degrees), the solute showed 

dominant movement to the southwest; total migration of the concentration center was 

approximately 12 cm (4.7 inch) from the site where the solution was introduced, which 

compared well with the center of concentration documented in resistivity surveys.  

Combined dispersion and diffusion, over the course of 135 days, caused radial solute 

plume migration with minor dominance in the direction of advection; effects of diffusion 

and dispersion are apparent through the decrease in solute concentration from the 

initial concentration of 35 g/L (ppt) to <5E-36 mg/L (ppm) over the time of the study. 

Reklaw strata and associated soil within the study site are heterogeneous and 

anisotropic as evidenced by infiltration ring tests, slug tests, and particle-size analyses.  
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Due to these conditions, electrical resistivity methods were better equipped than 

numerical modeling to track solute plume migration patterns because simple numerical 

modeling assumed homogeneous, isotropic conditions.  Additionally, variability in 

precipitation throughout the study was not incorporated into numerical modeling, 

which resulted in underestimation of solute migration over the course of 135 days, as 

numerical modeling assumed steady state conditions. 

Electrical resistivity analyses proved more valuable in tracking solute migration 

patterns through low permeability media, especially 2-D resistivity analyses—3-D 

inverted resistivity sections poorly delineated the solute plume within the study grid. 

Because of the effectiveness of 2-D resistivity models, radial 2.5-D resistivity analyses 

should be incorporated into future solute migration studies in low permeability media 

to better evaluate 3-D migration patterns. Additionally, more complex numerical 

modeling should be considered in future studies to account for greater heterogeneity 

and temporal changes in precipitation. 

This study has demonstrated that the Reklaw Formation is highly impermeable 

with low hydraulic conductivity values, which allows for significant isolation of potential 

near-surface contaminants to be introduced through semi-confining strata into the 

underlying Carrizo-Wilcox Aquifer.  Data collected during this study clearly demonstrate 

the effectiveness of electrical resistivity imaging on solute migration delineation and the 

effectives of the Reklaw Formation as a low permeability boundary. Data suggests that 
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lateral and vertical solute transport in the Reklaw Formation is primarily along 

macropore structures, but solute transport is dominated by diffusion.  The Reklaw 

appears to be an effective upper boundary for reduction of potential solute transport 

into the Carrizo-Wilcox Aquifer.
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Figure A1. Location of the study area within the Reklaw Formation in Nacogdoches County, 
Texas. Outcrop area of Reklaw Formation is shown in red; study site is represented by the star 
east of Nacogdoches, Texas. 
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Figure A2. Contoured elevation map (meters) of the study grid with red circles 
representing the three wells. 
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Figure A3. Initial (Day 1) Inverted resistivity section and dynamic slices (RMS = 
7.1%, L2 norm = 1.1, Iteration = 8). 
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Figure A4. Initial (Day 2) Inverted resistivity section and dynamic slices (RMS = 
6.7%, L2 norm = 1.0, Iteration = 8). 
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Figure A5. Initial (Day 3) Inverted resistivity section and dynamic slices (RMS = 
7.1%, L2 norm = 1.0, Iteration = 8). 
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Figure A6. Initial (Day 4) Inverted resistivity section and dynamic slices (RMS = 
7.6%, L2 norm = 1.2, Iteration = 8). 
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Figure A7. 5-Day Inverted resistivity section and dynamic slices (RMS = 7.8%, L2 
norm = 1.2, Iteration = 8). 
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Figure A8. 6-Day Inverted resistivity section and dynamic slices (RMS = 7.4%, L2 
norm = 1.2, Iteration = 8). 
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Figure A9. 7-Day Inverted resistivity section and dynamic slices (RMS = 7.9%, 
L2 norm = 1.3, Iteration = 8). 
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Figure A10. 8-Day Inverted resistivity section and dynamic slices (RMS = 7.2%, L2 
norm = 1.1, Iteration = 8). 
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Figure A11. 9-Day Inverted resistivity section and dynamic slices (RMS = 7.8%, L2 
norm = 1.2, Iteration = 8). 
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Figure A12. 10-Day Inverted resistivity section and dynamic slices (RMS = 7.4%, L2 
norm = 1.1, Iteration = 8). 
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Figure A13. 11-Day Inverted resistivity section and dynamic slices (RMS = 7.2%, L2 
norm = 1.1, Iteration = 8). 
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Figure A14. 12-Day Inverted resistivity section and dynamic slices (RMS = 4.0%, L2 
norm = 1.4, Iteration = 8). 



60 
 

 
Figure A15. 9-Day Inverted resistivity section and dynamic slices (RMS = 6.7%, L2 
norm = 0.9, Iteration = 8). 
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Date:
1/28/2019 1.0L 5.25E-06
7/10/2018 1.0L 8.2690E-06

2.0L 7.9360E-06

Date:
1/21/2019 0.5L 1.3202E-05

0.5L 8.1090E-06
7/10/2018 1.0L 3.3742E-04

2.0L 4.4796E-04

Date:
1/22/2019 0.5L 2.1227E-04

1.0L 1.9048E-04
7/10/2018 1.0L 1.6871E-04

2.0L 1.7206E-04

Well#1 7.1517E-06

Well #2 2.0167E-04

Well #3 1.8588E-04

Well #1

Well #2

Well #3

Average

Slug Tests (cm/sec)

Table A-1. Slug tests administered to each well, including the data, 
the amount of water delivered, and the rate at which the well 
recovered (cm/sec). 
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