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[1] The local three-dimensional structure of magnetic
reconnection has been measured for the first time in a
magnetohydrodynamic (MHD) laboratory plasma at the
Swarthmore Spheromak Experiment. An array of 600
magnetic probes which resolve ion inertial length and MHD
time scale dynamics on a single shot basis measured the
magnetic structure of partial spheromak merging events.
Counter-helicity spheromaksmerge rapidly, and reconnection
activity clearly self-generates a local component of B which
breaks the standard 2D symmetry at the ion inertial scale.
Consistent with prior results, no reconnection is observed for
co-helicity merging. INDEX TERMS: 7835 Space Plasma

Physics: Magnetic reconnection; 7831 Space Plasma Physics:

Laboratory studies; 0649 Electromagnetics: Optics; KEYWORDS:

magnetic reconnection,magnetohydrodynamics, plasma, laboratory,

spheromak, ssx. Citation: Cothran, C. D., M. Landreman, M. R.

Brown, and W. H. Matthaeus, Three-dimensional structure of

magnetic reconnection in a laboratory plasma, Geophys. Res. Lett.,

30(5), 1213, doi:10.1029/2002GL016497, 2003.

1. Introduction

[2] Magnetic reconnection is a central feature of low
frequency plasma dynamics in astrophysical and laboratory
plasmas [Parker, 1979; Priest and Forbes, 2000]. Recon-
nection mediates the interaction of the solar wind and the
magnetosphere at the terrestrial magnetopause [Sonnerup et
al., 1981; Øieroset et al., 2001; Mozer et al., 2002], and is
an important dynamical feature in the magnetotail [Nagai et
al., 2001] and in planetary magnetospheres [Russell, 2002].
In the solar context, reconnection is a key feature of solar
flare dynamics [Parker, 1957], and seems to be required to
generate chromospheric fluctuations that heat the solar
atmosphere [Axford and McKenzie, 1997]. In dynamo
theory, reconnection transfers flux generated at small scales
into large scale structures [Parker, 1979].
[3] Reconnection occurs when two bodies of highly

conductive plasma bearing oppositely directed, embedded
magnetic fields merge [Brown, 1999]. High conductivity
implies that the magnetic field and fluid (plasma) motions
are coupled. This condition fails in the reconnection layer
where the inflow stagnates and the two bodies of magneto-
fluid merge. Field lines convected into this region break and
reconnect across the layer, producing a global change in the
field topology. Magnetic energy consumed in the reconnec-

tion layer is converted to heat, outflow kinetic energy, and
individual particle acceleration.
[4] By assuming that the magnetic field and flows are

everywhere coplanar, including within the reconnection
region, a purely two-dimensional (2D) picture of reconnec-
tion is formed. Reconnection subject to this simplification
has been studied theoretically [Parker, 1957; Petschek,
1964] and computationally [Matthaeus and Montgomery,
1981] for decades. A number of experimental studies
deliberately enforce symmetries that facilitate interpretation
[Stenzel and Gekelman, 1979; Ono et al., 1993; Yamada et
al., 1997]. On all three fronts, theoretical, numerical, and
experimental, attention has focused on planar X, Y, and O
shaped magnetic structures [Brown, 1999; Yamada et al.,
1997; Stenzel and Gekelman, 1981]. While these efforts
have yielded important insights, it is likely that the funda-
mental physics responsible for reconnection will not obey
2D restrictions. Furthermore, reconnection is free to take
advantage of all three dimensions (3D) in any of its natural
astrophysical instances. Recently, theoretical and numerical
investigations have begun to explore collisionless recon-
nection in 2 1/2D [Mandt et al., 1994; Shay et al., 1998],
with the notable consensus [Ma and Bhattacharjee, 2001;
Shay et al., 2001] that a vertical quadrupole field structure
grows nonlinearly at the ion inertial scale due to the Hall
effect [Biskamp et al., 1995, 1997; Shay and Drake, 1998;
Shay et al., 1999; Bhattacharjee et al., 2001].
[5] There have also been some experiments focused on

3D properties of reconnection. Compact toroid (CT) merg-
ing studies with the TS-3 [Ono et al., 1997, 1996, 1993,
1990] machine measured co- and counter-helicity reconnec-
tion rate differences and observed ion heating by the
‘‘slingshot’’ effect, both of which are essentially 3D effects
of the global toroidal geometry. However, 2D probe arrays
were used for these magnetic structure measurements, and
the geometry was made axisymmetric by construction. This
enabled the poloidal flux function to be computed, thus
inferring an axisymmetic reconnection rate. Reconnection
and current sheet studies with the LAPD machine [Stenzel
and Gekelman, 1979] used a linear 2D geometry. While 3D
magnetic structure measurements were made by averaging
over thousands of shots with a single movable probe in a
highly reproducible plasma, the plasma was not in the MHD
regime (ri � L) and externally imposed vacuum fields were
significant.
[6] In this Letter, we report the first experimental inves-

tigation of the 3D magnetic structure of reconnection in an
MHD laboratory plasma. We present two main results, one
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related to topology, the other to dynamics. First, we have
clear evidence for the spontaneous generation of a compo-
nent of the magnetic field B normal to the conventional 2D
X-structure. This fundamentally 3D feature [Hesse and
Schindler, 1988] appears in the reconnection layer at the
ion inertial scale, and may represent an asymmetric sig-
nature of the Hall effect. Second, we derive from the probe
array data the first experimental visualization of the 3D
merger of flux tubes at MHD scales. We note that the large
scale dynamics in 3D is consistent with what others have
observed in 2D, vis. flux tubes of opposite magnetic
helicity (counter-helicity) merge much more readily than
do flux tubes of the same helicity (co-helicity) [Ono et al.,
1990].

2. Experiment

[7] The magnetic structure measurements presented in this
Letter were performed at the Swarthmore Spheromak Experi-
ment (SSX) [Brown, 1999; Brown et al., 2002a, 2002b] using
a 5� 5� 8 3D array of vector magnetic probes inserted into a
well defined volume where two spheromaks partially merge
[Kornack et al., 1998], as illustrated in Figure 1. Independent
plasma guns at each end of SSX generate spheromaks
[Geddes et al., 1998] with either right-handed or left-handed
magnetic helicity (twist). Figure 1 shows data for counter-
helicity spheromaks. Two cylindrical copper flux conservers,
0.5 m in diameter, contain each spheromak. As indicated in
the highlighted areas of the sketches in Figure 1, large back-
to-back slots are cut out of the midplane walls of each flux
conserver. The spheromaks therefore act as two reservoirs of
magnetofluid which merge through the slots. Unique to SSX,
this location is remote from the plasma sources (the guns):
while neutral gas (hydrogen) and vacuummagnetic fields are
introduced in the guns, only fully ionized plasma and
embedded magnetic fields convect into the slots. The linear
dimensions of the slots are large enough to allow significant
interaction about the spheromak minor radius a = 0.13 m.
Although the spheromaks are axisymmetric, the volume in
the slots where the spheromaks merge (and where reconnec-
tion occurs) is inherently 3D. During the observed reconnec-
tion, the system is not externally driven, although it is never
in complete equilibrium.
[8] The magnetic probe array measures the 3D magnetic

structure formed when the spheromaks merge. Starting
when the plasma guns fire (t � 0 ms), the 200 measurements
of B are recorded every 0.8 ms for the lifetime of the
spheromaks (�100 ms) using a custom set of multiplexing
electronics [Landreman et al., 2003]. Detailed calibration
and analysis of the probe array response with known test
fields [Landreman et al., 2003] indicate that the field
measurements are accurate to an absolute error of approx-
imately 20 G. The expanded views in Figure 1 show a
sample of the data at t = 64 ms from a single counter-helicity
shot of SSX. Referring to the coordinate system introduced
in Figure 1, the spatial resolution of the array is 1.5 cm in x
and 1.9 cm in y and z. The magnetofluid inflow is along the
±ẑ directions into the slots.
[9] Avariety of diagnostics have been used to characterize

the SSX spheromaks. The plasma density, measured using
quadrature laser interferometry to be ne � 5 � 1013cm�3,
corresponds to an ion inertial scale of c/wpiffi 2–3 cm. Triple

Langmuir probes measure the electron temperature to be Te
ffi 10–30 eV, and energy analyzers estimate the ion temper-
ature to be TI � 30 eV. With an average magnetic field of
�500 G, the ion gyroradius rI ffi 1 cm is much smaller than
the physical scale L of both the flux conservers and the
region of interest near the slots, rI � L. The Lundquist
number S, the ratio of the resistive magnetic diffusion time
tD = m0L

2/h to the Alfvén transit time tA, is large for SSX,
S ffi 100–1000. Accordingly, the SSX spheromaks are fully
in the MHD regime (S � 1, rI � L), and the resolution of
the probe array measurements are at or below the character-
istic MHD time and space scales.

3. Results

[10] Figure 2a summarizes the key topological result,
obtained by integrating field lines and ribbons (sheets of
field lines to accentuate the local twist) through the mag-
netic probe data of Figure 1. The four field ribbons drawn
through the inflow (green) and outflow (gray) regions are
seen to lie on a mostly planar 2D surface, indicating a
magnetic structure consistent with the conventional para-
digm for reconnection. These lines skirt the outer part of the
reconnection region, staying a few c/wpi away from the
center of the X-structure. However, the structure of the inner
part of the reconnection region departs dramatically from
any 2D expectations, as indicated by the fifth field ribbon

Figure 1. Top and end views of the Swarthmore
Spheromak Experiment. Spheromaks generated by plasma
guns partially merge across large slots cut in the midplane
walls of the flux conservers. Magnetofluid flows into the
slots in the ±ẑ direction. A magnetic probe array resolves
the magnetic structure of the reconnection region at ion
inertial length (2 cm) and MHD time (0.8 ms < tA) scales.
Magnified views show vector data for each of the 200 probe
locations at t = 64 ms after the plasma guns fired a counter-
helicity shot. For clarity, only the facing planes of data in
the views of (a) and (b) are highlighted. The largest fields
shown are approximately 800 G.
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(red) of Figure 2a. This reconnected ribbon sweeps through
the X-structure from below, indicating the 3D structure of
the central part of the reconnection region.
[11] The remaining parts of Figure 2 expand upon this

dual field structure. Figure 2b shows the ŷ projection of a
set of field lines drawn through both the inner (blue/red) and
outer (green/gray) parts of the reconnection region. The 2D
behavior of the outer reconnection region is clearly seen in
the ẑ projection of Figure 2c. In contrast, Figure 2d
indicates the structure of the inner reconnection region.
Both the reconnected (red) and unreconnected (blue) lines
are swept and sheared normal to the X-structure. This
behavior indicates the presence of a self-generated guide
field normal to the X-structure and local to the core of the
reconnection region. The magnitude of the normal field
component in this region is 80 G for this shot, which is
significantly greater than the systematic 20 G measurement
error, and is about 10% of the inflow field strength.
[12] A heuristically appealing (though formally imprecise)

definition of reconnection is the change of connectivity of
magnetic flux tubes [Hesse and Schindler, 1988]. In Figure 3,
this definition is applied to obtain the central dynamical result
of this Letter. In Figure 3a and 3b, magnetic flux tubes are
shown at two times from the same counter-helicity discharge
as Figure 1. There is a clear suggestion that initially distinct
flux tubes undergo merging by breaking and exchange of
field lines. Initially private field lines (t = 32 ms) cross over,
and experience a substantial degree of merger by t = 64 ms,
corresponding to an estimated merging velocity of a few 105

cm/s. This represents a normalized reconnection rate of
approximately 0.1 vA.
[13] In Figure 3c and 3d, similar flux tubes are shown for

another discharge in which the current in one spheromak is
reversed to study co-helicity interaction (both right-handed).
Although the time interval is the same as in Figure 3a and
3b, here we see a much slower evolution. There is little or
no suggestion of merging. Instead the flux tubes bend
around one another while remaining distinct. This is similar
to twisting of flux tubes reported for higher frequency
electron MHD with unmagnetized ions [Gekelman and
Pfister, 1988]. These 3D results are also consistent with
previous 2D observations, namely that flux tubes of oppo-
site magnetic helicity merge much more readily than do flux
tubes of the same helicity [Ono et al., 1990].

4. Discussion

[14] The origin of the self-generated field component
indicated in Figure 2 is not clear. One outstanding possi-
bility is that the Hall effect distorts the magnetic field within
an ion inertial scale of the reconnection region. This is
expected on the basis of both analytical and simulation
studies [Shay et al., 1998; Wang et al., 2000]. In addition,
there is some indication of the Hall effect on the structure of
reconnection at the dayside magnetopause as measured by
single spacecraft observations [Øieroset et al., 2001; Mozer
et al., 2002]. However, the present results do not detect the
characteristic Hall effect quadrupole structure, possibly due
to the nonsteady and asymmetric nature of this ‘‘reconnec-

Figure 2. The 3D reconnection topology visualized with
field lines and ribbons integrated through the data from
Figure 1. (a) A self-generated guide field in the core of the
reconnection region sweeps the red reconnected ribbon
vertically (E � B > 0). This purely 3D feature breaks the 2D
symmetry seen a few c/wpi from the core, where green
(inflow) and gray (outflow) ribbons trace a conventional 2D
X structure. (b) The ŷ projection with more lines (blue/red
are core lines with inflow/outflow connectivity). (c) The ẑ
projection shows that lines through the outer reconnection
region are coplanar. (d) The ẑ projection shows that lines
through the inner (core) reconnection region are twisted into
a 3D swept/sheared structure.

Figure 3. Interaction of magnetic flux tubes and helicity
dependence. View along ŷ. Counter-helicity interaction
(same data as Figure 1): (a) At t = 32 ms, flux is privately
located on each side. (b) At t = 64 ms (	10 Alfvén times
later), flux has reconnected and formed a new flux bundle.
Co-helicity interaction: (c) At t = 32 ms, flux is privately
located as in (a) above. (d) At t = 64 ms, flux tubes wrap
around one another but remain separate.
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tion event.’’ We also cannot rule out limitations of the
spatial probe resolution. Regardless of its origin, however,
the self-generated field component indicates that 3D recon-
nection is occuring locally. Assuming that the reconnection
electric field (not directly measured, but inferred from �v �
B in the inflow regions) threads this region, we are observ-
ing an effect fundamentally associated with 3D ‘‘finite B’’
reconnection [Schindler et al., 1988; Hesse and Schindler,
1988], namely a finite parallel electric field at the separator
(E � B 6¼ 0). This effect distinguishes 2D and 3D recon-
nection since E � B � 0 trivially for the classical 2D
paradigm. Note that E � B > 0 for the reconnected field
line swept normal to the X-structure in Figure 2a.

5. Conclusion

[15] These first experimental results on the local 3D
magnetic structure of MHD scale reconnection show some
similarity to the expectations of 2D steady models, but also
features that are intrinsically 3D. Familiar features include
the expected 2D X-structure centered around a reconnection
region, towards which magnetic flux is transported and from
which emerge newly connected fields. Most importantly we
describe fully 3D field effects: at the ion inertial scale, the
reconnection region is nonsymmetric, nonsteady, and exhib-
its a characteristic swept/sheared structure. There is an
apparent self-generation of a vertical guide field, resulting
in ‘‘finite B’’ reconnection [Hesse and Schindler, 1988].
Flux tubes rendered from counter-helicity 3D data rapidly
change from private unreconnected configurations into
merged reconnected configurations, and the time scale for
this appears to be compatible with fast reconnection at
substantial fraction of the Alfvén speed.

[16] Acknowledgments. This work was performed under Department
of Energy (DOE) grants DE-FG02-97ER54422 and DE-FG02-98ER54490.
Discussions with P. Bellan of Caltech, and V. S. Lukin and T. Kornack of
PPPL are gratefully acknowledged.
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