68 research outputs found

    A phylogenetic framework of the legume genus Aeschynomene for comparative genetic analysis of the Nod-dependent and Nod-independent symbioses

    Full text link
    Background : Among semi-aquatic species of the legume genus Aeschynomene, some have the property of being nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the synthesis of Nod factors. Knowledge of the specificities underlying this Nod-independent symbiosis has been gained from the model legume Aeschynomene evenia but our understanding remains limited due to the lack of comparative genetics with related taxa using a Nod factor-dependent process. To fill this gap, we combined different approaches to perform a thorough comparative analysis in the genus Aeschynomene. Results: This study significantly broadened previous taxon sampling, including in allied genera, in order to construct a comprehensive phylogeny. In the phylogenetic tree, five main lineages were delineated, including a novel lineage, the Nod-independent clade and another one containing a polytomy that comprised several Aeschynomene groups and all the allied genera. This phylogeny was matched with data on chromosome number, genome size and low-copy nuclear gene sequences to reveal the diploid species and a polytomy containing mostly polyploid taxa. For these taxa, a single allopolyploid origin was inferred and the putative parental lineages were identified. Finally, nodulation tests with different Bradyrhizobium strains revealed new nodulation behaviours and the diploid species outside of the Nod-independent clade were compared for their experimental tractability and genetic diversity. Conclusions: The extended knowledge of the genetics and biology of the different lineages sheds new light of the evolutionary history of the genus Aeschynomene and they provide a solid framework to exploit efficiently the diversity encountered in Aeschynomene legumes. Notably, our backbone tree contains all the species that are diploid and it clarifies the genetic relationships between the Nod-independent clade and the Nod-dependent lineages. This study enabled the identification of A. americana and A. patula as the most suitable species to undertake a comparative genetic study of the Nod-independent and Nod-dependent symbioses

    Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8

    Get PDF
    International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A new set of microsatellite markers for the peach palm (Bactris gasipaes Kunth): characterization and across-taxa utility within the tribe Cocoeae.

    No full text
    A (GA)n microsatellite-enriched library was constructed and a new set of 18 nuclear simple sequence repeat loci was isolated in Bactris gasipaes var. gasipaes. The loci were found to be highly variable in the target species and readily transferable to related Bactris species as well as to the Astrocaryum and Elaeis genera of the same Cocoeae tribe. These microsatellite resources are made available to study the genetic diversity and gene flow within the Bactris complex for a better understanding of the domestication process of the peach palm and for further Cocoeae genetic

    Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): characterization and utility across the genus Phoenix and in other palm genera.

    No full text
    A (GA)n microsatellite-enriched library was constructed and 16 nuclear simple sequence repeat (SSR) loci were characterized in Phoenix dactylifera. Across-taxa amplification and genotyping tests showed the utility of most SSR markers in 11 other Phoenix species and the transferability of some of them in Elaeis guineensis, 11 species of Pritchardia, Pritchardiopsis jeanneneyi and six species of Astrocaryum. The first to be published for P. dactylifera, these new SSR resources are available for cultivar identification, pedigree analysis, germplasm diversity as well as genetic mapping studie

    Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.)

    No full text
    International audienceA microsatellite-based high-density linkage map for oil palm (Elaeis guinensis Jacq.) was constructed from a cross between two heterozygous parents, a tenera palm from the La Me population (LM2T) and a dura palm from the Deli population (DA10D). A set of 390 simple sequence repeat (SSR) markers was developed in oil palm from microsatellite-enriched libraries and evaluated for polymorphism along with 21 coconut SSRs. A dense and genome-wide microsatellite framework as well as saturating amplified fragments length polymorphisms (AFLPs) allowed the construction of a linkage map consisting of 255 microsatellites, 688 AFLPs and the locus of the Sh gene, which controls the presence or absence of a shell in the oil palm fruit. An AFLP marker E-Agg/M-CAA132 was mapped at 4.7 cM from the Sh locus. The 944 genetic markers were distributed on 16 linkage groups (LGs) and covered 1,743 cM. Our linkage map is the first in oil palm to have 16 independent linkage groups corresponding to the plant's 16 homologous chromosome pairs. It is also the only high-density linkage map with as many microsatellite markers in an Arecaceae species and represents an important step towards quantitative trait loci analysis and physical mapping in the E. guineensis species
    corecore