864 research outputs found

    Caffeine Supplementation as an Ergogenic Aid for Muscular Strength and Endurance: A Recommendation for Coaches and Athletes

    Get PDF
    Caffeine (1, 3, 7-trimethylxanthine) which can be ubiquitously found in energy drinks, sodas, coffee, and supplements, is one of the principal legal drugs consumed worldwide. Caffeine based ergogenic aids are utilized prolifically within training and competition for an ergogenic benefit to enhance sporting performance by both recreational and elite athletes. The evidence of caffeine's ability to enhance endurance performance is well established, however, evidence of an ergogenic benefit for muscular endurance and strength-based tasks is limited. Moreover, the limited evidence for caffeine’s ergogenic benefit in muscular endurance and strength is equivocal, and therefore, practical recommendations for the implementation of caffeine supplementation in training and competition for coaches, and practitioners is difficult. Indeed, it is currently not known if, and how caffeine may improve muscular endurance and/or strength based tasks. Variability in the findings could be due to several factors including muscles tested, participant characteristics, exercise protocol, type and dose of caffeine used. This brief review will discuss the current literature relating to the potential efficacy of caffeine to enhance muscular endurance and strength based performance, and provides evidence based recommendations for athletes and coaches to implement

    A search for ionized jets towards massive young stellar objects

    Get PDF
    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and H II regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as H II regions and 2 were unable to be categorized. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically thin lobes resulting from shocks either internal to the jet and/or at working surfaces. 10 jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of ? =-0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporatingmagnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper limit on the jet phase lasting approximately 6.5×104 yr. Typical mass-loss rates in the jet are found to be 1.4× 10-5M? yr-1 with associated momentum rates of the order of (1-2) × 10-2M? km s-1 yr-1. © 2016 The Authors. Published by Oxford University Press on behalf of The Royal Astronomical Society

    Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples

    Get PDF
    Many simulation studies in biomedicine are based on a similar sequence of processing steps, starting from images and running through geometric model generation, assignment of tissue properties, numerical simulation and visualization of the results—a process known as image-based geometric modelling and simulation. We present an overview of software systems for implementing such a sequence both within highly integrated problem-solving environments and in the form of loosely integrated pipelines. Loose integration in this case indicates that individual programs function largely independently but communicate through files of a common format and support simple scripting, so as to automate multiple executions wherever possible. We then describe three specific applications of such pipelines to translational biomedical research in electrophysiology

    A paradigm in immunochemistry, revealed by monoclonal antibodies to spatially distinct epitopes on Syntenin-1

    Get PDF
    Syntenin-1 is an essential multi-functional adaptor protein, which has multiple roles in membrane trafficking and exosome biogenesis, as well as scaffolding interactions with either the actin cytoskeleton or focal adhesions. However, how this functional multiplicity relates to syntenin-1 distribution in different endosome compartments or other intracellular locations and its underlying involvement in cancer pathogenesis have yet to be fully defined. To help facilitate the investigation of syntenin-1 biology, we developed two specific monoclonal antibodies (Synt-2C6 and Synt-3A11) to spatially distinct linear sequence epitopes on syntenin-1, which were each designed to be unique at the six-amino acid level. These antibodies produced very different intracellular staining patterns, with Synt-2C6 detecting endosomes and Synt-3A11 producing a fibrillar staining pattern suggesting a cytoskeletal localisation. Treatment of cells with Nocodazole altered the intracellular localisation of Synt-3A11, which was consistent with the syntenin-1 protein interacting with microtubules. In prostate tissue biopsies, Synt-3A11 defined atrophy and early-stage prostate cancer, whereas Synt-2C6 only showed minimal interaction with atrophic tissue. This highlights a critical need for site-specific antibodies and a knowledge of their reactivity to define differential protein distributions, interactions and functions, which may differ between normal and malignant cells.Ian R. D. Johnson, Alexandra Sorvina, Jessica M. Logan, Courtney R. Moore, Jessica K. Heatlie, Emma J. Parkinson-Lawrence, Stavros Selemidis, John J. O’Leary, Lisa M. Butler and Douglas A. Brook

    The HO Southern Galactic Plane Survey (HOPS) - I. Techniques and HO maser data

    Get PDF
    The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present first results of the HO Southern Galactic Plane Survey (HOPS), using the Mopra Radio Telescope with a broad-band backend and a beam size of about 2 arcmin. We have observed 100 deg of the southern Galactic plane at 12mm (19.5-27.5GHz), including spectral line emission from HO masers, multiple metastable transitions of ammonia, cyanoacetylene, methanol and radio recombination lines. In this paper, we report on the characteristics of the survey and HO maser emission. We find 540 HO masers, of which 334 are new detections. The strongest maser is 3933Jy and the weakest is 0.7Jy, with 62 masers over 100Jy. In 14 maser sites, the spread in the velocity of the HO maser emission exceeds 100kms. In one region, the HO maser velocities are separated by 351.3kms. The rms noise levels are typically between 1 and 2Jy, with 95 per cent of the survey under 2Jy. We estimate completeness limits of 98 per cent at around 8.4Jy and 50 per cent at around 5.5Jy. We estimate that there are between 800 and 1500 HO masers in the Galaxy that are detectable in a survey with similar completeness limits to HOPS. We report possible masers in NH (11,9) and (8,6) emission towards G19.61-0.23 and in the NH (3,3) line towards G23.33-0.30.Peer reviewe

    Lepton flavor violation decays τμP1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τμP1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π\pi^+\pi^-, K+KK^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure

    Defining a research agenda for youth sport specialisation in the USA: The AMSSM Youth Early Sport Specialization Summit

    Get PDF
    Sport specialisation is becoming increasingly common among youth and adolescent athletes in the USA and many have raised concern about this trend. Although research on sport specialisation has grown significantly, numerous pressing questions remain pertaining to short-term and long-term effects of specialisation on the health and well-being of youth, including the increased risk of overuse injury and burnout. Many current elite athletes did not specialise at an early age. Methodological and study design limitations impact the quality of current literature, and researchers need to prioritise pressing research questions to promote safe and healthy youth sport participation. The American Medical Society for Sports Medicine hosted a Youth Early Sport Specialization Summit in April 2019 with the goal of synthesising and reviewing current scientific knowledge and developing a research agenda to guide future research in the field based on the identified gaps in knowledge. This statement provides a broad summary of the existing literature, gaps and limitations in current evidence and identifies key research priorities to help guide researchers conducting research on youth sport specialisation. Our goals are to help improve the quality and relevance of research on youth sport specialisation and to ultimately assure that opportunities for healthy and safe sport participation continue for all youth

    Defining a Research Agenda for Youth Sport Specialization in the United States: The AMSSM Youth Early Sport Specialization Summit

    Get PDF
    Sport specialization is becoming increasingly common among youth and adolescent athletes in the United States and many have raised concern about this trend. Although research on sport specialization has grown significantly, numerous pressing questions remain pertaining to short- and long-term effects of specialization on the health and well-being of youth, including the increased risk of overuse injury and burnout. Many current elite athletes did not specialize at an early age. Methodological and study design limitations impact the quality of current literature, and researchers need to prioritize pressing research questions to promote safe and healthy youth sport participation. The American Medical Society for Sports Medicine hosted a Youth Early Sport Specialization Summit in April 2019 with the goal of synthesizing and reviewing current scientific knowledge and developing a research agenda to guide future research in the field based on the identified gaps in knowledge. This statement provides a broad summary of the existing literature, gaps and limitations in current evidence, and identifies key research priorities to help guide researchers conducting research on youth sport specialization. Our goals are to help improve the quality and relevance of research on youth sport specialization and to ultimately assure that opportunities for healthy and safe sport participation continue for all youth
    corecore