671 research outputs found

    Argument-Driven Engineering in Middle School Science: An Exploratory Study of Changes in Engineering Identity Over an Academic Year

    Get PDF
    The goal of this study was to examine how the use of a new instructional model is related to changes in middle school students’ engineering identity. The intent of this instructional model, which is called argument-driven engineering (ADE), is to give students opportunities to design and critique solutions to meaningful problems using the core ideas and practices of science and engineering. The model also reflects current recommendations found in the literature for supporting the development or maintenance of engineering identity. This study took place in the context of an eighth-grade science classroom in order to explore how middle school students’ engineering identities change over time as they become more familiar with engineering core ideas and practices. One hundred students participated in this study. These students completed three design tasks during the school year that were created using the ADE instructional model. These students also completed a survey that was designed to measure two important aspects of an engineering identity (recognition and interest) at three different time points. The results of a hierarchical linear modeling analysis suggest that students’ ideas about how they view themselves and others view them in terms of engineering did not change over time and their reported interest decreased from one survey to the next. The difficulty of the design tasks and the ways teachers enacted the instructional model are proposed as potential explanations for this counterintuitive finding

    Evaluating the effectiveness of self-administration of medication (SAM) schemes in the hospital setting: a systematic review of the literature

    Get PDF
    BackgroundSelf-administration of medicines is believed to increase patients' understanding about their medication and to promote their independence and autonomy in the hospital setting. The effect of inpatient self-administration of medication (SAM) schemes on patients, staff and institutions is currently unclear.ObjectiveTo systematically review the literature relating to the effect of SAM schemes on the following outcomes: patient knowledge, patient compliance/medication errors, success in self-administration, patient satisfaction, staff satisfaction, staff workload, and costs.DesignKeyword and text word searches of online databases were performed between January and March 2013. Included articles described and evaluated inpatient SAM schemes. Case studies and anecdotal studies were excluded.Results43 papers were included for final analysis. Due to the heterogeneity of results and unclear findings it was not possible to perform a quantitative synthesis of results. Participation in SAM schemes often led to increased knowledge about drugs and drug regimens, but not side effects. However, the effect of SAM schemes on patient compliance/medication errors was inconclusive. Patients and staff were highly satisfied with their involvement in SAM schemes.ConclusionsSAM schemes appear to provide some benefits (e.g. increased patient knowledge), but their effect on other outcomes (e.g. compliance) is unclear. Few studies of high methodological quality using validated outcome measures exist. Inconsistencies in both measuring and reporting outcomes across studies make it challenging to compare results and draw substantive conclusions about the effectiveness of SAM schemes

    High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions

    Get PDF
    Reopening of universities to students following COVID-19 restrictions risks increased transmission due to high numbers of social contacts and the potential for asymptomatic transmission. Here, the authors use a mathematical model with social contact data to estimate the impacts of reopening a typical non-campus based university in the UK

    Model simulations of the Bay of Fundy Gyre : 2. Hindcasts for 2005–2007 reveal interannual variability in retentiveness

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C09005, doi:10.1029/2008JC004948.A persistent gyre at the mouth of the Bay of Fundy results from a combination of tidal rectification and buoyancy forcing. Here we assess recent interannual variability in the strength of the gyre using data assimilative model simulations. Realistic hindcast representations of the gyre are considered during cruises in 2005, 2006, and 2007. Assimilation of shipboard and moored acoustic Doppler current profiler velocities is used to improve the skill of the simulations, as quantified by comparison with nonassimilated drifter trajectories. Our hindcasts suggest a weakening of the gyre system during May 2005. Retention of simulated passive particles in the gyre during that period was highly reduced. A recovery of the dense water pool in the deep part of the basin by June 2006 resulted in a return to particle retention characteristics similar to climatology. Retention estimates reached a maximum during May 2007 (subsurface) and June–July 2007 (near surface). Interannual variability in the strength of the gyre was primarily modulated by the stratification of the dense water pool inside the Grand Manan Basin. These changes in stratification were associated with mixing conditions the preceding fall–winter and/or advectively driven modification of water mass properties.The preparation of this paper was supported by NSF grant OCE-0430724, NIEHS grant 1P50-ES01274201 (Woods Hole Center for Oceans and Human Health), andNOAAgrant NA06NOS4780245 (GOMTOX). Additional support was provided by NSF grant DMS-0417769

    Contacts and behaviours of university students during the COVID-19 pandemic at the start of the 2020/2021 academic year

    Get PDF
    University students have unique living, learning and social arrangements which may have implications for infectious disease transmission. To address this data gap, we created CONQUEST (COroNavirus QUESTionnaire), a longitudinal online survey of contacts, behaviour, and COVID-19 symptoms for University of Bristol (UoB) staff/students. Here, we analyse results from 740 students providing 1261 unique records from the start of the 2020/2021 academic year (14/09/2020–01/11/2020), where COVID-19 outbreaks led to the self-isolation of all students in some halls of residences. Although most students reported lower daily contacts than in pre-COVID-19 studies, there was heterogeneity, with some reporting many (median = 2, mean = 6.1, standard deviation = 15.0; 8% had ≥ 20 contacts). Around 40% of students’ contacts were with individuals external to the university, indicating potential for transmission to non-students/staff. Only 61% of those reporting cardinal symptoms in the past week self-isolated, although 99% with a positive COVID-19 test during the 2 weeks before survey completion had self-isolated within the last week. Some students who self-isolated had many contacts (mean = 4.3, standard deviation = 10.6). Our results provide context to the COVID-19 outbreaks seen in universities and are available for modelling future outbreaks and informing policy

    Batch-produced, GIS-informed range maps for birds based on provenanced, crowd-sourced data inform conservation assessments.

    Get PDF
    Accurate maps of species ranges are essential to inform conservation, but time-consuming to produce and update. Given the pace of change of knowledge about species distributions and shifts in ranges under climate change and land use, a need exists for timely mapping approaches that enable batch processing employing widely available data. We develop a systematic approach of batch-processing range maps and derived Area of Habitat maps for terrestrial bird species with published ranges below 125,000 km2 in Central and South America. (Area of Habitat is the habitat available to a species within its range.) We combine existing range maps with the rapidly expanding crowd-sourced eBird data of presences and absences from frequently surveyed locations, plus readily accessible, high resolution satellite data on forest cover and elevation to map the Area of Habitat available to each species. Users can interrogate the maps produced to see details of the observations that contributed to the ranges. Previous estimates of Areas of Habitat were constrained within the published ranges and thus were, by definition, smaller-typically about 30%. This reflects how little habitat within suitable elevation ranges exists within the published ranges. Our results show that on average, Areas of Habitat are 12% larger than published ranges, reflecting the often-considerable extent that eBird records expand the known distributions of species. Interestingly, there are substantial differences between threatened and non-threatened species. Some 40% of Critically Endangered, 43% of Endangered, and 55% of Vulnerable species have Areas of Habitat larger than their published ranges, compared with 31% for Near Threatened and Least Concern species. The important finding for conservation is that threatened species are generally more widespread than previously estimated

    Model simulations of the Bay of Fundy Gyre : 1. Climatological results

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C10027, doi:10.1029/2007JC004480.The characteristics of a persistent gyre in the mouth of the Bay of Fundy are studied using model simulations. A set of climatological runs are conducted to evaluate the relative importance of the different forcing mechanisms affecting the gyre. The main mechanisms are tidal rectification and density-driven circulation. Stronger circulation of the gyre occurs during the later part of the stratified season (July–August and September–October). The density-driven flow around the gyre is set up by weak tidal mixing in the deep basin in the central Bay of Fundy and strong tidal mixing on the shallow flanks around Grand Manan Island and western Nova Scotia. Spring river discharge has an important influence on near-surface circulation but only a small effect when averaged over the entire water column. Retention of particles in the gyre is controlled by the residual tidal circulation, increased frontal retention during stratified periods, wind stress, and interactions with the adjacent circulation of the Gulf of Maine. Residence times longer than 30 days are predicted for particles released in the proximity of the gyre.The preparation of this paper was supported by NSF grant OCE-0430724 and NIEHS grant 1P50-ES01274201 (Woods Hole Center for Oceans and Human Health) and NOAA grant NA06NOS4780245 (GOMTOX). Additional support was provided by NSF grant DMS-0417769

    A Climatic Stability Approach to Prioritizing Global Conservation Investments

    Get PDF
    Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002–2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • …
    corecore